
Suricata User Guide
Release 4.0.0-beta1

OISF

June 07, 2017

CONTENTS

1 What is Suricata 1
1.1 About the Open Information Security Foundation . 1

2 Installation 3
2.1 Source . 3
2.2 Binary packages . 4
2.3 Advanced Installation . 5

3 Command Line Options 7
3.1 Unit Tests . 9

4 Suricata Rules 11
4.1 Rules Introduction . 11
4.2 Meta-settings . 16
4.3 Header Keywords . 20
4.4 Prefilter . 31
4.5 Payload Keywords . 32
4.6 HTTP Keywords . 51
4.7 Flow Keywords . 71
4.8 Flowint . 74
4.9 Xbits . 76
4.10 File Keywords . 78
4.11 Rule Thresholding . 80
4.12 DNS Keywords . 82
4.13 SSL/TLS Keywords . 83
4.14 Modbus Keyword . 85
4.15 DNP3 Keywords . 87
4.16 ENIP/CIP Keywords . 90
4.17 Generic App Layer Keywords . 90
4.18 Lua Scripting . 91
4.19 Normalized Buffers . 93
4.20 Differences From Snort . 94

5 Rule Management 105
5.1 Rule Management with Oinkmaster . 105
5.2 Adding Your Own Rules . 108
5.3 Rule Reloads . 109

6 Making sense out of Alerts 111

7 Performance 113

i

7.1 Runmodes . 113
7.2 Packet Capture . 114
7.3 Tuning Considerations . 116
7.4 Hyperscan . 117
7.5 High Performance Configuration . 118
7.6 Statistics . 119
7.7 Ignoring Traffic . 121
7.8 Packet Profiling . 122
7.9 Rule Profiling . 123
7.10 Tcmalloc . 124

8 Configuration 125
8.1 Suricata.yaml . 125
8.2 Global-Thresholds . 164
8.3 Snort.conf to Suricata.yaml . 167
8.4 Log Rotation . 171
8.5 Multi Tenancy . 171
8.6 Dropping Privileges After Startup . 174

9 Reputation 175
9.1 IP Reputation . 175

10 Init Scripts 179

11 Setting up IPS/inline for Linux 181
11.1 Iptables configuration . 181

12 Output 185
12.1 EVE . 185
12.2 Lua Output . 196
12.3 Syslog Alerting Compatibility . 206
12.4 Custom http logging . 207
12.5 Custom tls logging . 208

13 File Extraction 211
13.1 Architecture . 211
13.2 Settings . 211
13.3 Output . 211
13.4 Rules . 212
13.5 MD5 . 212

14 Public Data Sets 215

15 Using Capture Hardware 217
15.1 Endace DAG . 217
15.2 Napatech Suricata Installation Guide . 217
15.3 Myricom . 221

16 Interacting via Unix Socket 223
16.1 Introduction . 223
16.2 Commands in standard running mode . 223
16.3 Commands on the cmd prompt . 224
16.4 Pcap processing mode . 224
16.5 Build your own client . 225

ii

17 Man Pages 227
17.1 Suricata . 227

18 Acknowledgements 231

19 Licenses 233
19.1 GNU General Public License . 233
19.2 Creative Commons Attribution-NonCommercial 4.0 International Public License 237
19.3 Suricata Source Code . 241
19.4 Suricata Documentation . 241

Index 243

iii

iv

CHAPTER

ONE

WHAT IS SURICATA

Suricata is a high performance Network IDS, IPS and Network Security Monitoring engine. It is open source and
owned by a community-run non-profit foundation, the Open Information Security Foundation (OISF). Suricata is
developed by the OISF.

About the Open Information Security Foundation

The Open Information Security Foundation is a non-profit foundation organized to build community and to support
open-source security technologies like Suricata, the world-class IDS/IPS engine.

License

The Suricata source code is licensed under version 2 of the GNU General Public License. This documentation is
licensed under the Creative Commons Attribution-NonCommercial 4.0 International Public License.

1

Suricata User Guide, Release 4.0.0-beta1

2 Chapter 1. What is Suricata

CHAPTER

TWO

INSTALLATION

Before Suricata can be used it has to be installed. Suricata can be installed on various distributions using binary
packages: Binary packages.

For people familiar with compiling their own software, the Source method is recommended.

Advanced users can check the advanced guides, see Advanced Installation.

Source

Installing from the source distribution files gives the most control over the Suricata installation.

Basic steps:

tar xzvf suricata-3.2beta1.tar.gz
cd suricata-3.2beta1
./configure
make
make install

This will install Suricata into /usr/local/bin/, use the default configuration in
/usr/local/etc/suricata/ and will output to /usr/local/var/log/suricata

Common configure options

--disable-gccmarch-native
Do not optimize the binary for the hardware it is built on. Add this flag if the binary is meant to be portable or
if Suricata is to be used in a VM.

--prefix=/usr/
Installs the Suricata binary into /usr/bin/. Default /usr/local/

--sysconfdir=/etc
Installs the Suricata configuration files into /etc/suricata/. Default /usr/local/etc/

--localstatedir=/var
Setups Suricata for logging into /var/log/suricata/. Default /usr/local/var/log/suricata

--enable-lua
Enables Lua support for detection and output.

--enable-geopip
Enables GeoIP support for detection.

3

Suricata User Guide, Release 4.0.0-beta1

Dependencies

For Suricata’s compilation you’ll need the following libraries and their development headers installed:

libpcap, libpcre, libmagic, zlib, libyaml

The following tools are required:

make gcc (or clang) pkg-config

For full features, also add:

libjansson, libnss, libgeoip, liblua5.1, libhiredis, libevent

Ubuntu/Debian

Minimal:

apt-get install libpcre3 libpcre3-dbg libpcre3-dev build-essential libpcap-dev \
libyaml-0-2 libyaml-dev pkg-config zlib1g zlib1g-dev \
make libmagic-dev

Recommended:

apt-get install libpcre3 libpcre3-dbg libpcre3-dev build-essential libpcap-dev \
libnet1-dev libyaml-0-2 libyaml-dev pkg-config zlib1g zlib1g-dev \
libcap-ng-dev libcap-ng0 make libmagic-dev libjansson-dev \
libnss3-dev libgeoip-dev liblua5.1-dev libhiredis-dev libevent-dev

Extra for iptables/nftables IPS integration:

apt-get install libnetfilter-queue-dev libnetfilter-queue1 \
libnetfilter-log-dev libnetfilter-log1 \
libnfnetlink-dev libnfnetlink0

Binary packages

Ubuntu

For Ubuntu, the OISF maintains a PPA suricata-stable that always contains the latest stable release.

To use it:

sudo add-apt-repository ppa:oisf/suricata-stable
sudo apt-get update
sudo sudo apt-get install suricata

Debian

In Debian Jessie Suricata is out of date, but an updated version is in Debian Backports.

As root do:

echo "deb http://http.debian.net/debian jessie-backports main" > \
/etc/apt/sources.list.d/backports.list

apt-get update
apt-get install suricata -t jessie-backports

4 Chapter 2. Installation

Suricata User Guide, Release 4.0.0-beta1

Fedora

dnf install suricata

RHEL/CentOS

For RedHat Enterprise Linux 7 and CentOS 7 the EPEL repository can be used.

yum install epel-release
yum install suricata

Advanced Installation

Various installation guides for installing from GIT and for other operating systems are maintained at:
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation

2.3. Advanced Installation 5

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation

Suricata User Guide, Release 4.0.0-beta1

6 Chapter 2. Installation

CHAPTER

THREE

COMMAND LINE OPTIONS

Suricata’s command line options:

-h
Display a brief usage overview.

-V
Displays the version of Suricata.

-c <path>
Path to configuration file.

-T
Test configuration.

-v
The -v option enables more verbosity of Suricata’s output. Supply multiple times for more verbosity.

-r <path>
Run in pcap offline mode reading files from pcap file.

-i <interface>
After the -i option you can enter the interface card you would like to use to sniff packets from. This option will
try to use the best capture method available.

--pcap[=<device>]
Run in PCAP mode. If no device is provided the interfaces provided in the pcap section of the configuration file
will be used.

--af-packet[=<device>]
Enable capture of packet using AF_PACKET on Linux. If no device is supplied, the list of devices from the
af-packet section in the yaml is used.

-q <queue id>
Run inline of the NFQUEUE queue ID provided. May be provided multiple times.

-s <filename.rules>
With the -s option you can set a file with signatures, which will be loaded together with the rules set in the yaml.

-S <filename.rules>
With the -S option you can set a file with signatures, which will be loaded exclusively, regardless of the rules set
in the yaml.

-l <directory>
With the -l option you can set the default log directory. If you already have the default-log-dir set in yaml, it
will not be used by Suricata if you use the -l option. It will use the log dir that is set with the -l option. If you do
not set a directory with the -l option, Suricata will use the directory that is set in yaml.

7

Suricata User Guide, Release 4.0.0-beta1

-D
Normally if you run Suricata on your console, it keeps your console occupied. You can not use it for other
purposes, and when you close the window, Suricata stops running. If you run Suricata as deamon (using the -D
option), it runs at the background and you will be able to use the console for other tasks without disturbing the
engine running.

--runmode <runmode>
With the –runmode option you can set the runmode that you would like to use. This command line option can
override the yaml runmode option.

Runmodes are: workers, autofp and single.

For more information about runmodes see Runmodes in the user guide.

-F <bpf filter file>
Use BPF filter from file.

-k [all|none]
Force (all) the checksum check or disable (none) all checksum checks.

--user=<user>
Set the process user after initialization. Overrides the user provided in the run-as section of the configuration
file.

--group=<group>
Set the process group to group after initialization. Overrides the group provided in the run-as section of the
configuration file.

--pidfile <file>
Write the process ID to file. Overrides the pid-file option in the configuration file and forces the file to be written
when not running as a daemon.

--init-errors-fatal
Exit with a failure when errors are encountered loading signatures.

--disable-detection
Disable the detection engine.

--dump-config
Dump the configuration loaded from the configuration file to the terminal and exit.

--build-info
Display the build information the Suricata was built with.

--list-app-layer-protos
List all supported application layer protocols.

--list-keywords=[all|csv|<kword>]
List all supported rule keywords.

--list-runmodes
List all supported run modes.

--set <key>=<value>
Set a configuration value. Useful for overriding basic configuration parameters in the configuration. For exam-
ple, to change the default log directory:

--set default-log-dir=/var/tmp

--engine-analysis
Print reports on analysis of different sections in the engine and exit. Please have a look at the conf parameter
engine-analysis on what reports can be printed

8 Chapter 3. Command Line Options

Suricata User Guide, Release 4.0.0-beta1

--unix-socket=<file>
Use file as the Suricata unix control socket. Overrides the filename provided in the unix-command section of the
configuration file.

--pcap-buffer-size=<size>
Set the size of the PCAP buffer (0 - 2147483647).

--netmap[=<device>]
Enable capture of packet using NETMAP on FreeBSD or Linux. If no device is supplied, the list of devices
from the netmap section in the yaml is used.

--pfring[=<device>]
Enable PF_RING packet capture. If no device provided, the devices in the Suricata configuration will be used.

--pfring-cluster-id <id>
Set the PF_RING cluster ID.

--pfring-cluster-type <type>
Set the PF_RING cluster type (cluster_round_robin, cluster_flow).

-d <divert-port>
Run inline using IPFW divert mode.

--dag <device>
Enable packet capture off a DAG card. If capturing off a specific stream the stream can be select using a device
name like “dag0:4”. This option may be provided multiple times read off multiple devices and/or streams.

--napatech
Enable packet capture using the Napatech Streams API.

--mpipe
Enable packet capture using the TileGX mpipe interface.

--erf-in=<file>
Run in offline mode reading the specific ERF file (Endace extensible record format).

--simulate-ips
Simulate IPS mode when running in a non-IPS mode.

Unit Tests

Builtin unittests are only available if Suricata has been built with –enable-unittests.

Running unittests does not take a configuration file. Use -l to supply an output directory.

-u
Run the unit tests and exit. Requires that Suricata be compiled with –enable-unittests.

-U, --unittest-filter=REGEX
With the -U option you can select which of the unit tests you want to run. This option uses REGEX. Example
of use: suricata -u -U http

--list-unittests
List all unit tests.

--fatal-unittests
Enables fatal failure on a unit test error. Suricata will exit instead of continuuing more tests.

--unittests-coverage
Display unit test coverage report.

3.1. Unit Tests 9

Suricata User Guide, Release 4.0.0-beta1

10 Chapter 3. Command Line Options

CHAPTER

FOUR

SURICATA RULES

Rules Introduction

Contents

• Rules Introduction
– Action
– Protocol
– Source and destination
– Ports (source-and destination-port)
– Direction
– Rule options

Signatures play a very important role in Suricata. In most occasions people are using existing rulesets. The most
used are Emerging Threats, Emerging Threats Pro and Sourcefire’s VRT. A way to install rules is described in Rule
Management with Oinkmaster. This Suricata Rules document explains all about signatures; how to read-, adjust-and
create them.

A rule/signature consists of the following:

The action, header and rule-options.

Example of a signature:

11

http://www.emergingthreats.net/
http://www.emergingthreatspro.com/
http://www.snort.org/vrt/

Suricata User Guide, Release 4.0.0-beta1

Action

For more information read ‘Action Order’ see Action-order.

Example:

In this example the red, bold-faced part is the action.

Protocol

This keyword in a signature tells Suricata which protocol it concerns. You can choose between four settings. tcp (for
tcp-traffic), udp, icmp and ip. ip stands for ‘all’ or ‘any’. Suricata adds a few protocols : http, ftp, tls (this includes
ssl), smb and dns (from v2.0). These are the so-called application layer protocols or layer 7 protocols. If you have a
signature with for instance a http-protocol, Suricata makes sure the signature can only match if it concerns http-traffic.

Example:

12 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

In this example the red, bold-faced part is the protocol.

Source and destination

In source you can assign IP-addresses; IPv4 and IPv6 combined as well as separated. You can also set variables such
as HOME_NET. (For more information see Rule-vars. In the Yaml-file you can set IP-addresses for variables such as
EXTERNAL_NET and HOME_NET. These settings will be used when you use these variables in a rule. In source
and destination you can make use of signs like ! And [].

For example:

! 1.1.1.1 (Every IP address but 1.1.1.1)
![1.1.1.1, 1.1.1.2] (Every IP address but 1.1.1.1 and 1.1.1.2)
$HOME_NET (Your setting of HOME_NET in yaml)
[$EXTERNAL_NET, !$HOME_NET] (EXTERNAL_NET and not HOME_NET)
[10.0.0.0/24, !10.0.0.5] (10.0.0.0/24 except for 10.0.0.5)
[.....,[....]]
[.... ,![.....]]

Pay attention to the following:

If your settings in Yaml are:

HOME_NET: any
EXTERNAL_NET: ! $HOME_NET

You can not write a signature using EXTERNAL_NET because it stands for ‘not any’. This is a invalid setting.

Example of source and destination in a signature:

The red, bold-faced part is the source.

4.1. Rules Introduction 13

Suricata User Guide, Release 4.0.0-beta1

The red, bold-faced part is the destination.

Ports (source-and destination-port)

Traffic comes in and goes out through ports. Different ports have different port-numbers. The HTTP-port for example
is 80 while 443 is the port for HTTPS and MSN makes use of port 1863. Commonly the Source port will be set
as ‘any’. This will be influenced by the protocol. The source port is designated at random by the operating system.
Sometimes it is possible to filter/screen on the source In setting ports you can make use of special signs as well, like
described above at ‘source’. Signs like:

! exception/negation
: range
[] signs to make clear which parts belong together
, separation

Example:

[80, 81, 82] (port 80, 81 and 82)
[80: 82] (Range from 80 till 82)
[1024:] (From 1024 till the highest port-number)
!80 (Every port but 80)
[80:100,!99] (Range from 80 till 100 but 99 excluded)
[1:80,![2,4]]
[....[.....]]

Example of ports in a signature:

14 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

In this example, the red, bold-faced part is the port.

Direction

The direction tells in which way the signature has to match. Nearly every signature has an arrow to the right. This
means that only packets with the same direction can match.

source -> destination
source <> destination (both directions)

Example:

alert tcp 1.2.3.4 1024 - > 5.6.7.8 80

Example 1 tcp-session

In this example there will only be a match if the signature has the same order/direction as the payload.

Example of direction in a signature:

4.1. Rules Introduction 15

Suricata User Guide, Release 4.0.0-beta1

In this example the red, bold-faced part is the direction.

Rule options

Keywords have a set format:

name: settings;

Sometimes it is just the name of the setting followed by ; . Like nocase;

There are specific settings for:

• meta-information.

• headers

• payloads

• flows

Note: The characters ; and " have special meaning in the Suricata rule language and must be escaped when used in
a rule option value. For example:

msg:"Message with semicolon\;";

For more information about these settings, you can click on the following headlines:

• Meta-settings

• Payload Keywords

• HTTP Keywords

• DNS Keywords

• Flow Keywords

• IP Reputation Rules

Meta-settings

Meta-settings have no effect on Suricata’s inspection; they do have an effect on the way Suricata reports events.

16 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

msg (message)

The keyword msg gives more information about the signature and the possible alert. The first part shows the class of
the signature. It is a convention that part is written in uppercase characters.

The format of msg is:

msg: "some description";

Examples:

msg:"ATTACK-RESPONSES 403 Forbidden";
msg:"ET EXPLOIT SMB-DS DCERPC PnP bind attempt";

It is a convention that msg is always the first keyword of a signature.

Another example of msg in a signature:

In this example the red, bold-faced part is the msg.

Note: The following characters must be escaped inside the msg: ; \ "

Sid (signature id)

The keyword sid gives every signature its own id. This id is stated with a number.

The format of sid is:

sid:123;

Example of sid in a signature:

In this example the red, bold-faced part is the sid.

Rev (Revision)

The sid keyword is almost every time accompanied by rev. Rev represents the version of the signature. If a signature
is modified, the number of rev will be incremented by the signature writers. The format of rev is:

rev:123;

It is a convention that sid comes before rev, and both are the last of all keywords.

Example of rev in a signature:

4.2. Meta-settings 17

Suricata User Guide, Release 4.0.0-beta1

In this example the red, bold-faced part is the rev.

Gid (group id)

The gid keyword can be used to give different groups of signatures another id value (like in sid). Suricata uses by
default gid 1. It is possible to modify this. It is not usual that it will be changed, and changing it has no technical
implications. You can only notice it in the alert.

Example of gid in a signature:

This is an example from the fast.log. In the part [1:2008124:2], 1 is the gid (2008124 is the the sid and 2 the rev).

Classtype

The classtype keyword gives information about the classification of rules and alerts. It consists of a short name, a long
name and a priority. It can tell for example whether a rule is just informational or is about a hack etcetera. For each
classtype, the classification.config has a priority which will be used in the rule.

It is a convention that classtype comes before sid and rev and after the rest of the keywords.

Example classtype:

config classification: web-application-attack,Web Application Attack,1
config classification: not-suspicious,Not Suspicious Traffic,3

18 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

In this example you see how classtype appears in signatures, the classification.config and the alert.

Another example of classtype in a signature:

In this example the red, bold-faced part is the classtype.

Reference

The reference keywords direct to places where information about the signature and about the problem the signature
tries to address, can be found. The reference keyword can appear multiple times in a signature. This keyword is meant
for signature-writers and analysts who investigate why a signature has matched. It has the following format:

reference: url, www.info.nl

In this example url is the type of reference. After that comes the actual reference (notice here you can not use http
before the url).

There are different types of references:

type:

system URL Prefix
bugtraq http://www.securityfocus.com/bid
cve http://cve.mitre.org/cgi-bin/cvename.cgi?name=
nessus http://cgi.nessus.org/plugins/dump.php3?id=
arachnids (No longer available but you might still encounter this in signatures.)

http://www.whitehats.com/info/IDS

4.2. Meta-settings 19

Suricata User Guide, Release 4.0.0-beta1

mcafee http://vil.nai.com/vil/dispVirus.asp?virus_k=
url http://

For example bugtraq will be replaced by the full url:

reference: bugtraq, 123; http://www.securityfocus.com/bid

Example of reference in a signature:

In this example the red, bold-faced part is the action.

Priority

The priority keyword comes with a mandatory numeric value which can range from 1 till 255. The numbers 1 to 4
are most often used. Signatures with a higher priority will be examined first. The highest priority is 1. Normally
signatures have already a priority through class type. This can be overruled with the keyword priority. The format of
priority is:

priority:1;

Metadata

Suricata ignores the words behind meta data. Suricata supports this keyword because it is part of the signature lan-
guage. The format is:

metadata:......;

Header Keywords

IP-keywords

ttl

The ttl keyword is used to check for a specific IP time-to-live value in the header of a packet. The format is:

ttl:<number>

For example:

ttl:10;

20 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

At the end of the ttl keyword you can enter the value on which you want to match. The Time-to-live value determines
the maximal amount of time a packet can be in the Internet-system. If this field is set to 0, then the packet has to be
destroyed. The time-to-live is based on hop count. Each hop/router the packet passes subtracts one of the packet TTL
counter. The purpose of this mechanism is to limit the existence of packets so that packets can not end up in infinite
routing loops.

Example of the ttl keyword in a rule:

Ipopts

With the ipopts keyword you can check if a specific ip option is set. Ipopts has to be used at the beginning of a rule.
You can only match on one option per rule. There are several options on which can be matched. These are:

Format of the ipopts keyword:

ipopts: <name>

For example:

ipopts: lsrr;

Example of ipopts in a rule:

4.3. Header Keywords 21

Suricata User Guide, Release 4.0.0-beta1

sameip

Every packet has a source IP-address and a destination IP-address. It can be that the source IP is the same as the
destination IP. With the sameip keyword you can check if the IP address of the source is the same as the IP address of
the destination. The format of the sameip keyword is:

sameip;

Example of sameip in a rule:

ip_proto

With the ip_proto keyword you can match on the IP protocol in the packet-header. You can use the name or the number
of the protocol. You can match for example on the following protocols:

1 ICMP Internet Control Message
6 TCP Transmission Control Protocol

17 UDP User Datagram
47 GRE General Routing Encapsulation
50 ESP Encap Security Payload for IPv6
51 AH Authentication Header for Ipv6
58 IPv6-ICMP ICMP for Ipv6

For the complete list of protocols and their numbers see http://en.wikipedia.org/wiki/List_of_IP_protocol_numbers

Example of ip_proto in a rule:

The named variante of that example would be:

ip_proto:PIM

22 Chapter 4. Suricata Rules

http://en.wikipedia.org/wiki/List_of_IP_protocol_numbers

Suricata User Guide, Release 4.0.0-beta1

Id

With the id keyword, you can match on a specific IP ID value. The ID identifies each packet sent by a host and
increments usually with one with each packet that is being send. The IP ID is uses as a fragment identification number.
Each packet has an IP ID, and when the packet becomes fragmented, all fragments of this packet have the same ID.
In this way, the receiver of the packet knows which fragments belong to the same packet. (IP ID does not take care of
the order, in that case offset is used. It clarifies the order of the fragments.)

Format of id:

id:<number>;

Example of id in a rule:

Geoip

The geoip keyword enables (you) to match on the source, destination or source and destination IP addresses of network
traffic, and to see to which country it belongs. To be able to do this, Suricata uses GeoIP API of Maxmind.

The syntax of geoip:

geoip: src, RU;
geoip: both, CN, RU;
geoip: dst, CN, RU, IR;
geoip: both, US, CA, UK;
geoip: any, CN, IR;

So, you can see you can use the following to make clear on which direction you would like to match:

both: both directions have to match with the given geoip (geopip’s)
any: one of the directions have to match with the given geoip (’s).
dest: if the destination matches with the given geoip.
src: the source matches with the given geoip.

The keyword only supports IPv4. As it uses the GeoIP API of Maxmind, libgeoip must be compiled in.

Fragments

Fragbits

With the fragbits keyword, you can check if the fragmentation and reserved bits are set in the IP header. The fragbits
keyword should be placed at the beginning of a rule. Fragbits is used to modify the fragmentation mechanism. During
routing of messages from one Internet module to the other, it can occur that a packet is bigger than the maximal packet

4.3. Header Keywords 23

Suricata User Guide, Release 4.0.0-beta1

size a network can process. In that case, a packet can be send in fragments. This maximum of the packet size is called
Maximal Transmit Unit (MTU).

You can match on the following bits:

M - More Fragments
D - Do not Fragment
R - Reserved Bit

Matching on this bits can be more specified with the following modifiers:

+ match on the specified bits, plus any others

* match if any of the specified bits are set
! match if the specified bits are not set

Format:

fragbits:[*+!]<[MDR]>;

Example of fragbits in a rule:

Fragoffset

With the fragoffset keyword you can match on specific decimal values of the IP fragment offset field. If you would
like to check the first fragments of a session, you have to combine fragoffset 0 with the More Fragment option. The
fragmentation offset field is convenient for reassembly. The id is used to determine which fragments belong to which
packet and the fragmentation offset field clarifies the order of the fragments.

You can use the following modifiers:

< match if the value is smaller than the specified value
> match if the value is greater than the specified value
! match if the specified value is not present

Format of fragoffset:

fragoffset:[!|<|>]<number>;

Example of fragoffset in a rule:

24 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

TCP keywords

seq

The seq keyword can be used in a signature to check for a specific TCP sequence number. A sequence number is
a number that is generated practically at random by both endpoints of a TCP-connection. The client and the server
both create a sequence number, which increases with one with every byte that they send. So this sequence number
is different for both sides. This sequence number has to be acknowledged by both sides of the connection. Through
sequence numbers, TCP handles acknowledgement, order and retransmission. Its number increases with every data-
byte the sender has send. The seq helps keeping track of to what place in a data-stream a byte belongs. If the SYN
flag is set at 1, than the sequence number of the first byte of the data is this number plus 1 (so, 2).

Example:

seq:0;

Example of seq in a signature:

Example of seq in a packet (Wireshark):

4.3. Header Keywords 25

Suricata User Guide, Release 4.0.0-beta1

ack

The ack is the acknowledgement of the receipt of all previous (data)-bytes send by the other side of the TCP-
connection. In most occasions every packet of a TCP connection has an ACK flag after the first SYN and a ack-number
which increases with the receipt of every new data-byte. The ack-keyword can be used in a signature to check for a
specific TCP acknowledgement number.

Format of ack:

ack:1;

Example of ack in a signature:

Example of ack in a packet (Wireshark):

26 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

window

The window keyword is used to check for a specific TCP window size. The TCP window size is a mechanism that has
control of the data-flow. The window is set by the receiver (receiver advertised window size) and indicates the amount
of bytes that can be received. This amount of data has to be acknowledged by the receiver first, before the sender can
send the same amount of new data. This mechanism is used to prevent the receiver from being overflowed by data.
The value of the window size is limited and can be 2 to 65.535 bytes. To make more use of your bandwidth you can
use a bigger TCP-window.

The format of the window keyword:

window:[!]<number>;

Example of window in a rule:

ICMP keywords

ICMP (Internet Control Message Protocol) is a part of IP. IP at itself is not reliable when it comes to delivering data
(datagram). ICMP gives feedback in case problems occur. It does not prevent problems from happening, but helps
in understanding what went wrong and where. If reliability is necessary, protocols that use IP have to take care

4.3. Header Keywords 27

Suricata User Guide, Release 4.0.0-beta1

of reliability themselves. In different situations ICMP messages will be send. For instance when the destination is
unreachable, if there is not enough buffer-capacity to forward the data, or when a datagram is send fragmented when
it should not be, etcetera. More can be found in the list with message-types.

There are four important contents of a ICMP message on which can be matched with corresponding ICMP-keywords.
These are: the type, the code, the id and the sequence of a message.

itype

The itype keyword is for matching on a specific ICMP type (number). ICMP has several kinds of messages and uses
codes to clarify those messages. The different messages are distinct by different names, but more important by numeric
values. For more information see the table with message-types and codes.

The format of the itype keyword:

itype:min<>max;
itype:[<|>]<number>;

Example This example looks for an ICMP type greater than 10:

itype:>10;

Example of the itype keyword in a signature:

icode

With the icode keyword you can match on a specific ICMP code. The code of a ICMP message clarifies the message.
Together with the ICMP-type it indicates with what kind of problem you are dealing with. A code has a different
purpose with every ICMP-type.

The format of the icode keyword:

icode:min<>max;
icode:[<|>]<number>;

Example: This example looks for an ICMP code greater than 5:

icode:>5;

Example of the icode keyword in a rule:

28 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

icmp_id

With the icmp_id keyword you can match on specific ICMP id-values. Every ICMP-packet gets an id when it is being
send. At the moment the receiver has received the packet, it will send a reply using the same id so the sender will
recognize it and connects it with the correct ICMP-request.

Format of the icmp_id keyword:

icmp_id:<number>;

Example: This example looks for an ICMP ID of 0:

icmp_id:0;

Example of the icmp_id keyword in a rule:

icmp_seq

You can use the icmp_seq keyword to check for a ICMP sequence number. ICMP messages all have sequence numbers.
This can be useful (together with the id) for checking which reply message belongs to which request message.

Format of the icmp_seq keyword:

icmp_seq:<number>;

Example: This example looks for an ICMP Sequence of 0:

icmp_seq:0;

Example of icmp_seq in a rule:

Message types and numbers:

4.3. Header Keywords 29

Suricata User Guide, Release 4.0.0-beta1

Meaning of type-numbers en codes combined:

30 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

Prefilter

The prefilter engines for other non-MPM keywords can be enabled in specific rules by using the ‘prefilter’ keyword.

4.4. Prefilter 31

Suricata User Guide, Release 4.0.0-beta1

In the following rule the TTL test will be used in prefiltering instead of the single byte pattern:

alert ip any any -> any any (ttl:123; prefilter; content:"a"; sid:1;)

For more information on how to configure the prefilter engines, see Prefilter Engines

Payload Keywords

pcre (Perl Compatible Regular Expressions)

The keyword pcre matches specific on regular expressions. More information about regular expressions can be found
here http://en.wikipedia.org/wiki/Regular_expression.

The complexity of pcre comes with a high price though: it has a negative influence on performance. So, to mitigate
Suricata from having to check pcre often, pcre is mostly combined with ‘content’. In that case, the content has to
match first, before pcre will be checked.

Format of pcre:

“/<regex>/opts”;

Example of pcre:

pcre:”/[0-9]{6}/”;

In this example there will be a match if the payload contains six numbers following.

Example of pcre in a signature:

There are a few qualities of pcre which can be modified:

• By default pcre is case-sensitive.

• The . (dot) is a part of regex. It matches on every byte except for newline characters.

• By default the payload will be inspected as one line.

These qualities can be modified with the following characters:

i pcre is case insensitive
s pcre does check newline characters
m can make one line (of the payload) count as two lines

These options are perl compatible modifiers. To use these modifiers, you should add them to pcre, behind regex. Like
this:

pcre: “/<regex>/i”;

32 Chapter 4. Suricata Rules

http://en.wikipedia.org/wiki/Regular_expression

Suricata User Guide, Release 4.0.0-beta1

Pcre compatible modifiers

There are a few pcre compatible modifiers which can change the qualities of pcre as well. These are:

• A: A pattern has to match at the beginning of a buffer. (In pcre ^ is similar to A.)

• E: Ignores newline characters at the end of the buffer/payload.

• G: Inverts the greediness.

Note: The following characters must be escaped inside the content: ; \ "

Suricata’s modifiers

Suricata has its own specific pcre modifiers. These are:

• R: Match relative to the last pattern match. It is similar to distance:0;

• U: Makes pcre match on the normalized uri. It matches on the uri_buffer just like uricontent and content com-
bined with http_uri.U can be combined with /R. Note that R is relative to the previous match so both matches
have to be in the HTTP-uri buffer. Read more about HTTP-uri normalization.

4.5. Payload Keywords 33

Suricata User Guide, Release 4.0.0-beta1

• I: Makes pcre match on the HTTP-raw-uri. It matches on the same buffer as http_raw_uri. I can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-raw-uri buffer.
Read more about HTTP-uri normalization.

• P: Makes pcre match on the HTTP- request-body. So, it matches on the same buffer as http_client_body. P
can be combined with /R. Note that R is relative to the previous match so both matches have to be in the
HTTP-request body.

• Q: Makes pcre match on the HTTP- response-body. So, it matches on the same buffer as http_server_body.
Q can be combined with /R. Note that R is relative to the previous match so both matches have to be in the
HTTP-response body.

• H: Makes pcre match on the HTTP-header. H can be combined with /R. Note that R is relative to the previous
match so both matches have to be in the HTTP-header body.

• D: Makes pcre match on the unnormalized header. So, it matches on the same buffer as http_raw_header. D
can be combined with /R. Note that R is relative to the previous match so both matches have to be in the
HTTP-raw-header.

• M: Makes pcre match on the request-method. So, it matches on the same buffer as http_method. M can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-method
buffer.

• C: Makes pcre match on the HTTP-cookie. So, it matches on the same buffer as http_cookie. C can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-cookie buffer.

34 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

• S: Makes pcre match on the HTTP-stat-code. So, it matches on the same buffer as http_stat_code. S can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-stat-code
buffer.

• Y: Makes pcre match on the HTTP-stat-msg. So, it matches on the same buffer as http_stat_msg. Y can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-stat-
msg buffer.

• B: You can encounter B in signatures but this is just for compatibility. So, Suricata does not use B but supports
it so it does not cause errors.

• O: Overrides the configures pcre match limit.

• V: Makes pcre match on the HTTP-User-Agent. So, it matches on the same buffer as http_user_agent. V can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-User-
Agent buffer.

• W: Makes pcre match on the HTTP-Host. So, it matches on the same buffer as http_host. W can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-Host buffer.

Fast Pattern

Suricata Fast Pattern Determination Explained

If the ‘fast_pattern’ keyword is explicitly set in a rule, Suricata will use that as the fast pattern match. The ‘fast_pattern’
keyword can only be set once per rule. If ‘fast_pattern’ is not set, Suricata automatically determines the content to use
as the fast pattern match.

The following explains the logic Suricata uses to automatically determine the fast pattern match to use.

Be aware that if there are positive (i.e. non-negated) content matches, then negated content matches are ignored for
fast pattern determination. Otherwise, negated content matches are considered.

The fast_pattern selection criteria are as follows:

1. Suricata first identifies all content matches that have the highest “priority” that are used in the signature. The
priority is based off of the buffer being matched on and generally ‘http_*’ buffers have a higher priority (lower
number is higher priority). See Appendix B for details on which buffers have what priority.

2. Within the content matches identified in step 1 (the highest priority content matches), the longest (in terms of
character/byte length) content match is used as the fast pattern match.

3. If multiple content matches have the same highest priority and qualify for the longest length, the one with the
highest character/byte diversity score (“Pattern Strength”) is used as the fast pattern match. See Appendix C for
details on the algorithm used to determine Pattern Strength.

4. If multiple content matches have the same highest priority, qualify for the longest length, and the same highest
Pattern Strength, the buffer (“list_id”) that was registered last is used as the fast pattern match. See Appendix B
for the registration order of the different buffers/lists.

5. If multiple content matches have the same highest priority, qualify for the longest length, the same highest
Pattern Strength, and have the same list_id (i.e. are looking in the same buffer), then the one that comes first
(from left-to-right) in the rule is used as the fast pattern match.

It is worth noting that for content matches that have the same priority, length, and Pattern Strength, ‘http_stat_msg’,
‘http_stat_code’, and ‘http_method’ take precedence over regular ‘content’ matches.

4.5. Payload Keywords 35

Suricata User Guide, Release 4.0.0-beta1

Appendices

Appendix A - Buffers, list_id values, and Registration Order for Suricata 1.3.4 This should be pretty much the
same for Suricata 1.1.x - 1.4.x.

list_id Content Modifier Keyword Buffer Name Registration Order
1 <none> (regular content match) DETECT_SM_LIST_PMATCH 1 (first)
2 http_uri DETECT_SM_LIST_UMATCH 2
6 http_client_body DETECT_SM_LIST_HCBDMATCH 3
7 http_server_body DETECT_SM_LIST_HSBDMATCH 4
8 http_header DETECT_SM_LIST_HHDMATCH 5
9 http_raw_header DETECT_SM_LIST_HRHDMATCH 6
10 http_method DETECT_SM_LIST_HMDMATCH 7
11 http_cookie DETECT_SM_LIST_HCDMATCH 8
12 http_raw_uri DETECT_SM_LIST_HRUDMATCH 9
13 http_stat_msg DETECT_SM_LIST_HSMDMATCH 10
14 http_stat_code DETECT_SM_LIST_HSCDMATCH 11
15 http_user_agent DETECT_SM_LIST_HUADMATCH 12 (last)

Note: registration order doesn’t matter when it comes to determining the fast pattern match for Suricata 1.3.4 but
list_id value does.

Appendix B - Buffers, list_id values, Priorities, and Registration Order for Suricata 2.0.7 This should be pretty
much the same for Suricata 2.0.x.

36 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

Priority (lower number is
higher priority)

Registration
Order

Content Modifier
Keyword

Buffer Name list_id

3 11 <none> (regular
content match)

DE-
TECT_SM_LIST_PMATCH

1

3 12 http_method DE-
TECT_SM_LIST_HMDMATCH

12

3 13 http_stat_code DE-
TECT_SM_LIST_HSCDMATCH

9

3 14 http_stat_msg DE-
TECT_SM_LIST_HSMDMATCH

8

2 1 (first) http_client_body DE-
TECT_SM_LIST_HCBDMATCH

4

2 2 http_server_body DE-
TECT_SM_LIST_HSBDMATCH

5

2 3 http_header DE-
TECT_SM_LIST_HHDMATCH

6

2 4 http_raw_header DE-
TECT_SM_LIST_HRHDMATCH

7

2 5 http_uri DE-
TECT_SM_LIST_UMATCH

2

2 6 http_raw_uri DE-
TECT_SM_LIST_HRUDMATCH

3

2 7 http_host DE-
TECT_SM_LIST_HHHDMATCH

10

2 8 http_raw_host DE-
TECT_SM_LIST_HRHHDMATCH

11

2 9 http_cookie DE-
TECT_SM_LIST_HCDMATCH

13

2 10 http_user_agent DE-
TECT_SM_LIST_HUADMATCH

14

2 15 (last) dns_query DE-
TECT_SM_LIST_DNSQUERY_MATCH

20

Note: list_id value doesn’t matter when it comes to determining the fast pattern match for Suricata 2.0.7 but registration
order does.

Appendix C - Pattern Strength Algorithm From detect-engine-mpm.c. Basically the Pattern Strength “score”
starts at zero and looks at each character/byte in the passed in byte array from left to right. If the character/byte has
not been seen before in the array, it adds 3 to the score if it is an alpha character; else it adds 4 to the score if it is a
printable character, 0x00, 0x01, or 0xFF; else it adds 6 to the score. If the character/byte has been seen before it adds
1 to the score. The final score is returned.

/** \brief Predict a strength value for patterns

*
* Patterns with high character diversity score higher.

* Alpha chars score not so high

* Other printable + a few common codes a little higher

* Everything else highest.

* Longer patterns score better than short patters.

*
* \param pat pattern

* \param patlen length of the patternn

*
* \retval s pattern score

*/

4.5. Payload Keywords 37

Suricata User Guide, Release 4.0.0-beta1

uint32_t PatternStrength(uint8_t *pat, uint16_t patlen) {
uint8_t a[256];
memset(&a, 0 ,sizeof(a));
uint32_t s = 0;
uint16_t u = 0;
for (u = 0; u < patlen; u++) {

if (a[pat[u]] == 0) {
if (isalpha(pat[u]))

s += 3;
else if (isprint(pat[u]) || pat[u] == 0x00 || pat[u] == 0x01 || pat[u] == 0xFF)

s += 4;
else

s += 6;
a[pat[u]] = 1;

} else {
s++;

}
}
return s;

}

Only one content of a signature will be used in the Multi Pattern Matcher (MPM). If there are multiple contents, then
Suricata uses the ‘strongest’ content. This means a combination of length, how varied a content is, and what buffer
it is looking in. Generally, the longer and more varied the better. For full details on how Suricata determines the fast
pattern match, see Suricata Fast Pattern Determination Explained.

Sometimes a signature writer concludes he wants Suricata to use another content than it does by default.

For instance:

User-agent: Mozilla/5.0 Badness;

content:”User-Agent|3A|”;
content:”Badness”; distance:0;

In this example you see the first content is longer and more varied than the second one, so you know Suricata will
use this content for the MPM. Because ‘User-Agent:’ will be a match very often, and ‘Badness’ appears less often in
network traffic, you can make Suricata use the second content by using ‘fast_pattern’.

content:”User-Agent|3A|”;
content:”Badness”; distance:0; fast_pattern;

The keyword fast_pattern modifies the content previous to it.

Fast-pattern can also be combined with all previous mentioned keywords, and all mentioned HTTP-modifiers.

fast_pattern:only

Sometimes a signature contains only one content. In that case it is not necessary Suricata will check it any further
after a match has been found in MPM. If there is only one content, the whole signature matches. Suricata notices

38 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

this automatically. In some signatures this is still indicated with ‘fast_pattern:only;’. Although Suricata does not need
fast_pattern:only, it does support it.

Fast_pattern: ‘chop’

If you do not want the MPM to use the whole content, you can use fast_pattern ‘chop’.

For example:

content: “aaaaaaaaabc”; fast_pattern:8,4;

This way, MPM uses only the last four characters.

Payload keywords inspect the content of the payload of a packet or stream.

Content

The content keyword is very important in signatures. Between the quotation marks you can write on what you would
like the signature to match. The most simple format of content is:

content: ”............”;

It is possible to use several contents in a signature.

Contents match on bytes. There are 256 different values of a byte (0-255). You can match on all characters; from a till
z, upper case and lower case and also on all special signs. But not all of the bytes are printable characters. For these
bytes heximal notations are used. Many programming languages use 0x00 as a notation, where 0x means it concerns a
binary value, however the rule language uses |00| as a notation. This kind of notation can also be used for printable
characters.

Example:

|61| is a
|61 61| is aa
|41| is A
|21| is !
|0D| is carriage return
|0A| is line feed

There are characters you can not use in the content because they are already important in the signature. For matching
on these characters you should use the heximal notation. These are:

“ |22|
; |3B|
: |3A|
| |7C|

It is a convention to write the heximal notation in upper case characters.

To write for instance http:// in the content of a signature, you should write it like this: content:
“http|3A|//”; If you use a heximal notation in a signature, make sure you always place it between pipes. Other-
wise the notation will be taken literally as part of the content.

A few examples:

content:“a|0D|bc”;
content:”|61 0D 62 63|";
content:”a|0D|b|63|”;

4.5. Payload Keywords 39

Suricata User Guide, Release 4.0.0-beta1

It is possible to let a signature check the whole payload for a match with the content or to let it check specific parts
of the payload. We come to that later. If you add nothing special to the signature, it will try to find a match in all the
bytes of the payload.

Example:

In this example, the red, bold-faced part is the content.

By default the pattern-matching is case sensitive. The content has to be accurate, otherwise there will not be a match.

Legend:

40 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

It is possible to use the ! for exceptions in contents as well.

For example:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"Outdated Firefox on
Windows"; content:"User-Agent|3A| Mozilla/5.0 |28|Windows|3B| ";
content:"Firefox/3."; distance:0; content:!"Firefox/3.6.13";
distance:-10; sid:9000000; rev:1;)

You see content:!”Firefox/3.6.13”;. This means an alert will be generated if the the used version of
Firefox is not 3.6.13.

Note: The following characters must be escaped inside the content: ; \ "

Nocase

If you do not want to make a distinction between uppercase and lowercase characters, you can use nocase. The
keyword nocase is a content modifier.

The format of this keyword is:

nocase;

You have to place it after the content you want to modify, like:

content: “abc”; nocase;

Example nocase:

4.5. Payload Keywords 41

Suricata User Guide, Release 4.0.0-beta1

It has no influence on other contents in the signature.

Depth

The depth keyword is a absolute content modifier. It comes after the content. The depth content modifier comes with
a mandatory numeric value, like:

depth:12;

The number after depth designates how many bytes from the beginning of the payload will be checked.

Example:

42 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

Offset

The offset keyword designates from which byte in the payload will be checked to find a match. For instance offset:3;
checks the fourth byte and further.

4.5. Payload Keywords 43

Suricata User Guide, Release 4.0.0-beta1

The keywords offset and depth can be combined and are often used together.

For example:

content; “def”; offset:3; depth:3;

If this was used in a signature, it would check the payload from the third byte till the sixth byte.

44 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

Distance

The keyword distance is a relative content modifier. This means it indicates a relation between this content keyword
and the content preceding it. Distance has its influence after the preceding match. The keyword distance comes with a
mandatory numeric value. The value you give distance, determines the byte in the payload from which will be checked
for a match relative to the previous match. Distance only determines where Suricata will start looking for a pattern.
So, distance:5; means the pattern can be anywhere after the previous match + 5 bytes. For limiting how far after the
last match Suricata needs to look, use ‘within’.

Examples of distance:

4.5. Payload Keywords 45

Suricata User Guide, Release 4.0.0-beta1

Distance can also be a negative number. It can be used to check for matches with partly the same content (see example)
or for a content even completely before it. This is not very often used though. It is possible to attain the same results
with other keywords.

46 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

Within

The keyword within is relative to the preceding match. The keyword within comes with a mandatory numeric value.
Using within makes sure there will only be a match if the content matches with the payload within the set amount of
bytes. Within can not be 0 (zero)

Example:

Example of matching with within:

4.5. Payload Keywords 47

Suricata User Guide, Release 4.0.0-beta1

The second content has to fall/come ‘within 3 ‘ from the first content.

As mentioned before, distance and within can be very well combined in a signature. If you want Suricata to check a
specific part of the payload for a match, use within.

48 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

Isdataat

The purpose of the isdataat keyword is to look if there is still data at a specific part of the payload. The keyword starts
with a number (the position) and then optional followed by ‘relative’ separated by a comma and the option rawbytes.
You use the word ‘relative’ to know if there is still data at a specific part of the payload relative to the last match.

So you can use both examples:

isdataat:512;

isdataat:50, relative;

The first example illustrates a signature which searches for byte 512 of the payload. The second example illustrates a
signature searching for byte 50 after the last match.

You can also use the negation (!) before isdataat.

4.5. Payload Keywords 49

Suricata User Guide, Release 4.0.0-beta1

Dsize

With the dsize keyword, you can match on the size of the packet payload. You can use the keyword for example to
look for abnormal sizes of payloads. This may be convenient in detecting buffer overflows.

Format:

dsize:<number>;

example of dsize in a rule:

rpc

The rpc keyword can be used to match in the SUNRPC CALL on the RPC procedure numbers and the RPC version.

You can modify the keyword by using a wild-card, defined with * With this wild-card you can match on all version
and/or procedure numbers.

RPC (Remote Procedure Call) is an application that allows a computer program to execute a procedure on another
computer (or address space). It is used for inter-process communication. See http://en.wikipedia.org/wiki/Inter-
process_communication

Format:

rpc:<application number>, [<version number>|*], [<procedure number>|*]>;

50 Chapter 4. Suricata Rules

http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Inter-process_communication

Suricata User Guide, Release 4.0.0-beta1

Example of the rpc keyword in a rule:

Replace

The replace content modifier can only be used in ips. It adjusts network traffic. It changes the content it follows (‘abc’)
into another (‘def’), see example:

The replace modifier has to contain as many characters as the content it replaces. It can only be used with individual
packets. It will not work for Normalized Buffers like HTTP uri or a content match in the reassembled stream.

The checksums will be recalculated by Suricata and changed after the replace keyword is being used.

pcre

For information about pcre check the pcre (Perl Compatible Regular Expressions) page.

fast_pattern

For information about fast_pattern check the Fast Pattern page.

HTTP Keywords

There are additional content modifiers that can provide protocol-specific capabilities at the application layer. More
information can be found at Payload Keywords These keywords make sure the signature checks only specific parts of
the network traffic. For instance, to check specifically on the request URI, cookies, or the HTTP request or response
body, etc.

4.6. HTTP Keywords 51

Suricata User Guide, Release 4.0.0-beta1

Types of modifiers

There are 2 types of modifiers. The older style ‘content modifiers’ look back in the rule.

Example:

alert http any any -> any any (content:"index.php"; http_uri; sid:1;)

In the above example the pattern ‘index.php’ is modified to inspect the HTTP uri buffer.

The more recent type is called the ‘sticky buffer’. It places the buffer name first and all keywords following it apply to
that buffer.

Example:

alert http any any -> any any (http_response_line; content:"403 Forbidden"; sid:1;)

In the above example the pattern ‘403 Forbidden’ is inspected against the HTTP response line because it follows the
http_response_line keyword.

The following request keywords are available:

Keyword Sticky or Modifier Direction
http_uri Modifier Request
http_raw_uri Modifier Request
http_method Modifier Request
http_request_line Sticky Buffer Request
http_client_body Modifier Request
http_header Modifier Both
http_raw_header Modifier Both
http_cookie Modifier Both
http_user_agent Modifier Request
http_host Modifier Request
http_raw_host Modifier Request
http_accept Sticky Buffer Request
http_accept_lang Sticky Buffer Request
http_accept_enc Sticky Buffer Request
http_referer Sticky Buffer Request
http_connection Sticky Buffer Request
http_content_type Sticky Buffer Both
http_content_len Sticky Buffer Both
http_start Sticky Buffer Both
http_protocol Sticky Buffer Both
http_header_names Sticky Buffer Both

The following response keywords are available:

52 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

Keyword Sticky or Modifier Direction
http_stat_msg Modifier Response
http_stat_code Modifier Response
http_response_line Sticky Buffer Response
http_header Modifier Both
http_raw_header Modifier Both
http_cookie Modifier Both
http_server_body Modifier Response
file_data Sticky Buffer Response
http_content_type Sticky Buffer Both
http_content_len Sticky Buffer Both
http_start Sticky Buffer Both
http_protocol Sticky Buffer Both
http_header_names Sticky Buffer Both

It is important to understand the structure of HTTP requests and responses. A simple example of a HTTP request and
response follows:

HTTP request

GET /index.html HTTP/1.0\r\n

GET is a request method. Examples of methods are: GET, POST, PUT, HEAD, etc. The URI path is /index.html
and the HTTP version is HTTP/1.0. Several HTTP versions have been used over the years; of the versions 0.9, 1.0
and 1.1, 1.0 and 1.1 are the most commonly used today.

HTTP response

HTTP/1.0 200 OK\r\n
<html>
<title> some page </title>
</HTML>

In this example, HTTP/1.0 is the HTTP version, 200 the response status code and OK the response status message.

Another more detailed example:

Request:

4.6. HTTP Keywords 53

Suricata User Guide, Release 4.0.0-beta1

Response:

54 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

Request:

4.6. HTTP Keywords 55

Suricata User Guide, Release 4.0.0-beta1

Although cookies are sent in an HTTP header, you can not match on them with the http_header keyword. Cookies
are matched with their own keyword, namely http_cookie.

Each part of the table belongs to a so-called buffer. The HTTP method belongs to the method buffer, HTTP headers
to the header buffer etc. A buffer is a specific portion of the request or response that Suricata extracts in memory for
inspection.

All previous described keywords can be used in combination with a buffer in a signature. The keywords distance
and within are relative modifiers, so they may only be used within the same buffer. You can not relate content
matches against different buffers with relative modifiers.

http_method

With the http_method content modifier, it is possible to match specifically and only on the HTTP method
buffer. The keyword can be used in combination with all previously mentioned content modifiers such as: depth,
distance, offset, nocase and within.

Examples of methods are: GET, POST, PUT, HEAD, DELETE, TRACE, OPTIONS, CONNECT and PATCH.

Example of a method in a HTTP request:

Example of the purpose of method:

56 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

4.6. HTTP Keywords 57

Suricata User Guide, Release 4.0.0-beta1

http_uri and http_raw_uri

With the http_uri and the http_raw_uri content modifiers, it is possible to match specifically and only on the
request URI buffer. The keyword can be used in combination with all previously mentioned content modifiers like
depth, distance, offset, nocase and within.

To learn more about the difference between http_uri and http_raw_uri, please read the information about
HTTP-uri normalization.

Example of the URI in a HTTP request:

Example of the purpose of http_uri:

58 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

Example of the purpose of http_raw_uri:

#.. image:: http-keywords/raw_uri.png

uricontent

The uricontent keyword has the exact same effect as the http_uri content modifier. uricontent is a depre-
cated (although still supported) way to match specifically and only on the request URI buffer.

Example of uricontent:

The difference between http_uri and uricontent is the syntax:

When authoring new rules, it is recommended that the http_uri content modifier be used rather than the deprecated
uricontent keyword.

4.6. HTTP Keywords 59

Suricata User Guide, Release 4.0.0-beta1

urilen

The urilen keyword is used to match on the length of the request URI. It is possible to use the < and > operators,
which indicate respectively smaller than and larger than.

The format of urilen is:

urilen:3;

Other possibilities are:

urilen:1;
urilen:>1;
urilen:<10;
urilen:10<>20; (bigger than 10, smaller than 20)

Example:

Example of urilen in a signature:

You can also append norm or raw to define what sort of buffer you want to use (normalized or raw buffer).

60 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

http_protocol

The http_protocol inspects the protocol field from the HTTP request or response line. If the request line is ‘GET
/ HTTP/1.0rn’, then this buffer will contain ‘HTTP/1.0’.

Example:

alert http any any -> any any (flow:to_server; http_protocol; content:"HTTP/1.0"; sid:1;)

http_request_line

The http_request_line forces the whole HTTP request line to be inspected.

Example:

alert http any any -> any any (http_request_line; content:"GET / HTTP/1.0"; sid:1;)

http_header and http_raw_header

With the http_header content modifier, it is possible to match specifically and only on the HTTP header buffer.
This contains all of the extracted headers in a single buffer, except for those indicated in the documentation that are
not able to match by this buffer and have their own content modifier (e.g. http_cookie). The modifier can be used
in combination with all previously mentioned content modifiers, like depth, distance, offset, nocase and
within.

Note: the header buffer is normalized. Any trailing whitespace and tab characters are removed. See:
http://lists.openinfosecfoundation.org/pipermail/oisf-users/2011-October/000935.html. To avoid that, use
the http_raw_header keyword.

Example of a header in a HTTP request:

Example of the purpose of http_header:

4.6. HTTP Keywords 61

http://lists.openinfosecfoundation.org/pipermail/oisf-users/2011-October/000935.html

Suricata User Guide, Release 4.0.0-beta1

http_cookie

With the http_cookie content modifier, it is possible to match specifically and only on the cookie buffer. The key-
word can be used in combination with all previously mentioned content modifiers like depth, distance, offset,
nocase and within.

Note that cookies are passed in HTTP headers, but are extracted to a dedicated buffer and matched using their own
specific content modifier.

Example of a cookie in a HTTP request:

62 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

Example of the purpose of http_cookie:

http_user_agent

The http_user_agent content modifier is part of the HTTP request header. It makes it possible to match specif-
ically on the value of the User-Agent header. It is normalized in the sense that it does not include the _”User-Agent:
“_ header name and separator, nor does it contain the trailing carriage return and line feed (CRLF). The keyword can
be used in combination with all previously mentioned content modifiers like depth, distance, offset, nocase
and within. Note that the pcre keyword can also inspect this buffer when using the /V modifier.

Normalization: leading spaces are not part of this buffer. So “User-Agent: rn” will result in an empty
http_user_agent buffer.

Example of the User-Agent header in a HTTP request:

4.6. HTTP Keywords 63

Suricata User Guide, Release 4.0.0-beta1

Example of the purpose of http_user_agent:

Notes

• The http_user_agent buffer will NOT include the header name, colon, or leading whitespace. i.e. it will
not include “User-Agent: ”.

• The http_user_agent buffer does not include a CRLF (0x0D 0x0A) at the end. If you want to match the
end of the buffer, use a relative isdataat or a PCRE (although PCRE will be worse on performance).

• If a request contains multiple “User-Agent” headers, the values will be concatenated in the
http_user_agent buffer, in the order seen from top to bottom, with a comma and space (”, ”) between
each of them.

Example request:

GET /test.html HTTP/1.1
User-Agent: SuriTester/0.8
User-Agent: GGGG

http_user_agent buffer contents:

SuriTester/0.8, GGGG

• Corresponding PCRE modifier: V

• Using the http_user_agent buffer is more efficient when it comes to performance than using the
http_header buffer (~10% better).

• http://blog.inliniac.net/2012/07/09/suricata-http_user_agent-vs-http_header/

64 Chapter 4. Suricata Rules

http://blog.inliniac.net/2012/07/09/suricata-http_user_agent-vs-http_header/

Suricata User Guide, Release 4.0.0-beta1

http_accept

Sticky buffer to match on the HTTP Accept header. Only contains the header value. The \r\n after the header are not
part of the buffer.

Example:

alert http any any -> any any (http_accept; content:"image/gif"; sid:1;)

http_accept_enc

Sticky buffer to match on the HTTP Accept-Encoding header. Only contains the header value. The \r\n after the header
are not part of the buffer.

Example:

alert http any any -> any any (http_accept_enc; content:"gzip"; sid:1;)

http_accept_lang

Sticky buffer to match on the HTTP Accept-Language header. Only contains the header value. The \r\n after the
header are not part of the buffer.

Example:

alert http any any -> any any (http_accept_lang; content:"en-us"; sid:1;)

http_connection

Sticky buffer to match on the HTTP Connection header. Only contains the header value. The \r\n after the header are
not part of the buffer.

Example:

alert http any any -> any any (http_connection; content:"keep-alive"; sid:1;)

http_content_type

Sticky buffer to match on the HTTP Content-Type headers. Only contains the header value. The \r\n after the header
are not part of the buffer.

Use flow:to_server or flow:to_client to force inspection of request or response.

Examples:

alert http any any -> any any (flow:to_server; \
http_content_type; content:"x-www-form-urlencoded"; sid:1;)

alert http any any -> any any (flow:to_client; \
http_content_type; content:"text/javascript"; sid:2;)

4.6. HTTP Keywords 65

Suricata User Guide, Release 4.0.0-beta1

http_content_len

Sticky buffer to match on the HTTP Content-Length headers. Only contains the header value. The \r\n after the header
are not part of the buffer.

Use flow:to_server or flow:to_client to force inspection of request or response.

Examples:

alert http any any -> any any (flow:to_server; \
http_content_len; content:"666"; sid:1;)

alert http any any -> any any (flow:to_client; \
http_content_len; content:"555"; sid:2;)

To do a numeric inspection of the content length, byte_test can be used.

Example, match if C-L is equal to or bigger than 8079:

alert http any any -> any any (flow:to_client; \
http_content_len; byte_test:0,>=,8079,0,string,dec; sid:3;)

http_referer

Sticky buffer to match on the HTTP Referer header. Only contains the header value. The \r\n after the header are not
part of the buffer.

Example:

alert http any any -> any any (http_referer; content:".php"; sid:1;)

http_start

Inspect the start of a HTTP request or response. This will contain the request/reponse line plus the request/response
headers. Use flow:to_server or flow:to_client to force inspection of request or response.

Example:

alert http any any -> any any (http_start; content:"HTTP/1.1|0d 0a|User-Agent"; sid:1;)

The buffer contains the normalized headers and is terminated by an extra \r\n to indicate the end of the headers.

http_header_names

Inspect a buffer only containing the names of the HTTP headers. Useful for making sure a header is not present or
testing for a certain order of headers.

Buffer starts with a \r\n and ends with an extra \r\n.

Example buffer:

\\r\\nHost\\r\\n\\r\\n

Example rule:

alert http any any -> any any (http_header_names; content:"|0d 0a|Host|0d 0a|"; sid:1;)

66 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

Example to make sure only Host is present:

alert http any any -> any any (http_header_names; \
content:"|0d 0a 0d 0a|Host|0d 0a 0d 0a|"; sid:1;)

Example to make sure User-Agent is directly after Host:

alert http any any -> any any (http_header_names; \
content:"|0d 0a|Host|0d 0a|User-Agent|0d 0a|"; sid:1;)

Example to make sure User-Agent is after Host, but not necessarily directly after:

alert http any any -> any any (http_header_names; \
content:"|0d 0a|Host|0d 0a|"; content:"|0a 0d|User-Agent|0d 0a|"; \
distance:-2; sid:1;)

http_client_body

With the http_client_body content modifier, it is possible to match specifically and only on the HTTP request
body. The keyword can be used in combination with all previously mentioned content modifiers like distance,
offset, nocase, within, etc.

Example of http_client_body in a HTTP request:

Example of the purpose of http_client_body:

4.6. HTTP Keywords 67

Suricata User Guide, Release 4.0.0-beta1

Note: how much of the request/client body is inspected is controlled in the libhtp configuration section via the
request-body-limit setting.

http_stat_code

With the http_stat_code content modifier, it is possible to match specifically and only on the HTTP status code
buffer. The keyword can be used in combination with all previously mentioned content modifiers like distance,
offset, nocase, within, etc.

Example of http_stat_code in a HTTP response:

Example of the purpose of http_stat_code:

http_stat_msg

With the http_stat_msg content modifier, it is possible to match specifically and only on the HTTP status mes-
sage buffer. The keyword can be used in combination with all previously mentioned content modifiers like depth,
distance, offset, nocase and within.

Example of http_stat_msg in a HTTP response:

Example of the purpose of http_stat_msg:

68 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

http_response_line

The http_response_line forces the whole HTTP response line to be inspected.

Example:

alert http any any -> any any (http_response_line; content:"HTTP/1.0 200 OK"; sid:1;)

http_server_body

With the http_server_body content modifier, it is possible to match specifically and only on the HTTP response
body. The keyword can be used in combination with all previously mentioned content modifiers like distance,
offset, nocase, within, etc.

Note: how much of the response/server body is inspected is controlled in your libhtp configuration section via the
response-body-limit setting.

Notes

• Using http_server_body is similar to having content matches that come after file_data except that it
doesn’t permanently (unless reset) set the detection pointer to the beginning of the server response body. i.e. it
is not a sticky buffer.

• http_server_body will match on gzip decoded data just like file_data does.

• Since http_server_body matches on a server response, it can’t be used with the to_server or
from_client flow directives.

• Corresponding PCRE modifier: Q

4.6. HTTP Keywords 69

Suricata User Guide, Release 4.0.0-beta1

http_host and http_raw_host

With the http_host content modifier, it is possible to match specifically and only the normalized hostname. The
http_raw_host inspects the raw hostname.

The keyword can be used in combination with most of the content modifiers like distance, offset, within, etc.

The nocase keyword is not allowed anymore. Keep in mind that you need to specify a lowercase pattern.

Notes

• The http_host and http_raw_host buffers are populated from either the URI (if the full URI is present
in the request like in a proxy request) or the HTTP Host header. If both are present, the URI is used.

• The http_host and http_raw_host buffers will NOT include the header name, colon, or leading whites-
pace if populated from the Host header. i.e. they will not include “Host: ”.

• The http_host and http_raw_host buffers do not include a CRLF (0x0D 0x0A) at the end. If you want to
match the end of the buffer, use a relative ‘isdataat’ or a PCRE (although PCRE will be worse on performance).

• The http_host buffer is normalized to be all lower case.

• The content match that http_host applies to must be all lower case or have the nocase flag set.

• http_raw_host matches the unnormalized buffer so matching will be case-sensitive (unless nocase is set).

• If a request contains multiple “Host” headers, the values will be concatenated in the http_host and
http_raw_host buffers, in the order seen from top to bottom, with a comma and space (”, ”) between
each of them.

Example request:

GET /test.html HTTP/1.1
Host: ABC.com
Accept: */*
Host: efg.net

http_host buffer contents:

abc.com, efg.net

http_raw_host buffer contents:

ABC.com, efg.net

• Corresponding PCRE modifier (http_host): W

• Corresponding PCRE modifier (http_raw_host): Z

file_data

With file_data, the HTTP response body is inspected, just like with http_server_body. The file_data
keyword works a bit differently from the normal content modifiers; when used in a rule, all content matches following
it in the rule are affected (modified) by it.

Example:

alert http any any -> any any (file_data; content:"abc"; content:"xyz";)

70 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

The file_data keyword affects all following content matches, until the pkt_data keyword is encountered or it
reaches the end of the rule. This makes it a useful shortcut for applying many content matches to the HTTP response
body, eliminating the need to modify each content match individually.

Note: how much of the response/server body is inspected is controlled in your libhtp configuration section via the
response-body-limit setting.

pcre

For information about the pcre keyword, check the pcre (Perl Compatible Regular Expressions) page.

fast_pattern

For information about the fast_pattern keyword, check the Fast Pattern page.

Flow Keywords

Flowbits

Flowbits consists of two parts. The first part describes the action it is going to perform, the second part is the name of
the flowbit.

There are multiple packets that belong to one flow. Suricata keeps those flows in memory. For more information see
Flow Settings. Flowbits can make sure an alert will be generated when for example two different packets match. An
alert will only be generated when both packets match. So, when the second packet matches, Suricata has to know if
the first packet was a match too. Flowbits marks the flow if a packet matches so Suricata ‘knows’ it should generate
an alert when the second packet matches as well.

Flowbits have different actions. These are:

flowbits: set, name Will set the condition/'name', if present, in the flow.
flowbits: isset, name Can be used in the rule to make sure it generates an alert

when the rule matches and the condition is set in the flow.
flowbits: toggle, name Reverses the present setting. So for example if a condition is set,

it will be unset and vice-versa.
flowbits: unset, name Can be used to unset the condition in the flow.
flowbits: isnotset, name Can be used in the rule to make sure it generates an alert

when it matches and the condition is not set in the flow.
flowbits: noalert No alert will be generated by this rule.

Example:

4.7. Flow Keywords 71

Suricata User Guide, Release 4.0.0-beta1

When you take a look at the first rule you will notice it would generate an alert if it would match, if it were not for the
‘flowbits: noalert’ at the end of that rule. The purpose of this rule is to check for a match on ‘userlogin’ and mark that
in the flow. So, there is no need for generating an alert. The second rule has no effect without the first rule. If the first
rule matches, the flowbits sets that specific condition to be present in the flow. Now with the second rule there can be
checked whether or not the previous packet fulfills the first condition. If at that point the second rule matches, an alert
will be generated.

It is possible to use flowbits several times in a rule and combine the different functions.

Flow

The flow keyword can be used to match on direction of the flow, so to/from client or to/from server. It can also match
if the flow is established or not. The flow keyword can also be use to say the signature has to match on stream only
(only_stream) or on packet only (no_stream).

So with the flow keyword you can match on:

to_client Match on packets from server to client.

to_server Match on packets from client to server.

from_client Match on packets from client to server (same as to_server).

from_server Match on packets from server to client (same as to_client).

established Match on established connections.

not_established Match on packets that are not part of an established connection.

stateless Match on packets that are and are not part of an established connection.

72 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

only_stream Match on packets that have been reassembled by the stream engine.

no_stream Match on packets that have not been reassembled by the stream engine. Will not match packets that have
been reeassembled.

only_frag Match packets that have been reassembled from fragments.

no_frag Match packets that have not been reassembled from fragments.

Multiple flow options can be combined, for example:

flow:to_client, established
flow:to_server, established, only_stream
flow:to_server, not_established, no_frag

The determination of established depends on the protocol:

• For TCP a connection will be established after a three way handshake.

• For other protocols (for example UDP), the connection will be considered established after seeing traffic from
both sides of the connection.

4.7. Flow Keywords 73

Suricata User Guide, Release 4.0.0-beta1

Flowint

For information, read the information on the Flowint page.

stream_size

The stream size option matches on traffic according to the registered amount of bytes by the sequence numbers. There
are several modifiers to this keyword:

> greater than
< less than
= equal
!= not equal
>= greater than or equal
<= less than or equal

Format

stream_size:<server|client|both|either>, <modifier>, <number>;

Example of the stream-size keyword in a rule:

Flowint

Flowint is a precursor to the Global Variables task we will be adding to the engine very soon, which will allow the
capture, storage and comparison of data in a variable. It will be as the name implies Global. So you can compare data
from packets in unrelated streams.

74 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

Flowint allows storage and mathematical operations using variables. It operates much like flowbits but with the
addition of mathematical capabilities and the fact that an integer can be stored and manipulated, not just a flag set. We
can use this for a number of very useful things, such as counting occurrences, adding or subtracting occurrences, or
doing thresholding within a stream in relation to multiple factors. This will be expanded to a global context very soon,
so users can perform these operations between streams.

The syntax is as follows:

flowint: , ;

Define a var (not required), or check that one is set or not set.

flowint: , , ;

flowint: , < +,-,=,>,<,>=,<=,==, != >, ;

Compare or alter a var. Add, subtract, compare greater than or less than, greater than or equal to, and less than or equal
to are available. The item to compare with can be an integer or another variable.

For example, if you want to count how many times a username is seen in a particular stream and alert if it is over 5.

alert tcp any any -> any any (msg:"Counting Usernames"; content:"jonkman"; \
flowint: usernamecount, +, 1; noalert;)

This will count each occurrence and increment the var usernamecount and not generate an alert for each.

Now say we want to generate an alert if there are more than five hits in the stream.

alert tcp any any -> any any (msg:"More than Five Usernames!"; content:"jonkman"; \
flowint: usernamecount, +, 1; flowint:usernamecount, >, 5;)

So we’ll get an alert ONLY if usernamecount is over five.

So now let’s say we want to get an alert as above but NOT if there have been more occurrences of that username
logging out. Assuming this particular protocol indicates a log out with “jonkman logout”, let’s try:

alert tcp any any -> any any (msg:"Username Logged out"; content:"logout jonkman"; \
flowint: usernamecount, -, 1; flowint:usernamecount, >, 5;)

So now we’ll get an alert ONLY if there are more than five active logins for this particular username.

This is a rather simplistic example, but I believe it shows the power of what such a simple function can do for rule
writing. I see a lot of applications in things like login tracking, IRC state machines, malware tracking, and brute force
login detection.

Let’s say we’re tracking a protocol that normally allows five login fails per connection, but we have vulnerability
where an attacker can continue to login after that five attempts and we need to know about it.

alert tcp any any -> any any (msg:"Start a login count"; content:"login failed"; \
flowint:loginfail, notset; flowint:loginfail, =, 1; noalert;)

So we detect the initial fail if the variable is not yet set and set it to 1 if so. Our first hit.

alert tcp any any -> any any (msg:"Counting Logins"; content:"login failed"; \
flowint:loginfail, isset; flowint:loginfail, +, 1; noalert;)

We are now incrementing the counter if it’s set.

alert tcp any any -> any any (msg:"More than Five login fails in a Stream"; \
content:"login failed"; flowint:loginfail, isset; flowint:loginfail, >, 5;)

4.8. Flowint 75

Suricata User Guide, Release 4.0.0-beta1

Now we’ll generate an alert if we cross five login fails in the same stream.

But let’s also say we also need alert if there are two successful logins and a failed login after that.

alert tcp any any -> any any (msg:"Counting Good Logins"; content:"login successful"; \
flowint:loginsuccess, +, 1; noalert;)

Here we’re counting good logins, so now we’ll count good logins relevant to fails:

alert tcp any any -> any any (msg:"Login fail after two successes"; \
content:"login failed"; flowint:loginsuccess, isset; flowint:loginsuccess, =, 2;)

Here are some other general examples:

alert tcp any any -> any any (msg:"Setting a flowint counter"; content:"GET"; \
flowint:myvar, notset; flowint:maxvar,notset; \
flowint:myvar,=,1; flowint: maxvar,=,6;)

alert tcp any any -> any any (msg:"Adding to flowint counter"; \
content:"Unauthorized"; flowint:myvar,isset; flowint: myvar,+,2;)

alert tcp any any -> any any (msg:"if the flowint counter is 3 create a new counter"; \
content:"Unauthorized"; flowint:myvar, isset; flowint:myvar,==,3; \
flowint:cntpackets,notset; flowint:cntpackets, =, 0;)

alert tcp any any -> any any (msg:"count the rest without generating alerts"; \
flowint:cntpackets,isset; flowint:cntpackets, +, 1; noalert;)

alert tcp any any -> any any (msg:"fire this when it reach 6"; \
flowint: cntpackets, isset; \
flowint: maxvar,isset; flowint: cntpackets, ==, maxvar;)

Xbits

Set, unset, toggle and check for bits stored per host or ip_pair.

Syntax:

xbits:noalert;
xbits:<set|unset|isset|toggle>,<name>,track <ip_src|ip_dst|ip_pair>;
xbits:<set|unset|isset|toggle>,<name>,track <ip_src|ip_dst|ip_pair> \

[,expire <seconds>];
xbits:<set|unset|isset|toggle>,<name>,track <ip_src|ip_dst|ip_pair> \

[,expire <seconds>];

Notes

• No difference between using hostbits and xbits with track ip_<src|dst>

• If you set on a client request and use track ip_dst, if you want to match on the server response, you
check it (isset) with track ip_src.

• To not alert, use noalert;

• See also:

– https://blog.inliniac.net/2014/12/21/crossing-the-streams-in-suricata/

76 Chapter 4. Suricata Rules

https://blog.inliniac.net/2014/12/21/crossing-the-streams-in-suricata/

Suricata User Guide, Release 4.0.0-beta1

– http://www.cipherdyne.org/blog/2013/07/crossing-the-streams-in-ids-signature-languages.html

YAML settings

Bits that are stored per host are stored in the Host table. This means that host table settings affect hostsbits and xbits
per host.

Bits that are stored per IP pair are stored in the IPPair table. This means that ippair table settings, especially memcap,
affect xbits per ip_pair.

Threading

Due to subtle timing issues between threads the order of sets and checks can be slightly unpredictible.

Unix Socket

Hostbits can be added, removed and listed through the unix socket.

Add:

suricatasc -c "add-hostbit <ip> <bit name> <expire in seconds>"
suricatasc -c "add-hostbit 1.2.3.4 blacklist 3600"

If an hostbit is added for an existing hostbit, it’s expiry timer is updated.

Remove:

suricatasc -c "remove-hostbit <ip> <bit name>"
suricatasc -c "remove-hostbit 1.2.3.4 blacklist"

List:

suricatasc -c "list-hostbit <ip>"
suricatasc -c "list-hostbit 1.2.3.4"

This results in:

{
"message":
{

"count": 1,
"hostbits":

[{
"expire": 89,
"name": "blacklist"

}]
},
"return": "OK"

}

Examples

Creating a SSH blacklist

Below is an example of rules incoming to a SSH server.

4.9. Xbits 77

http://www.cipherdyne.org/blog/2013/07/crossing-the-streams-in-ids-signature-languages.html

Suricata User Guide, Release 4.0.0-beta1

The first 2 rules match on a SSH software version often used in bots. They drop the traffic and create an ‘xbit’ ‘badssh’
for the source ip. It expires in an hour:

drop ssh any any -> $MYSERVER 22 (msg:"DROP libssh incoming"; \
flow:to_server,established; ssh.softwareversion:"libssh"; \
xbits:set, badssh, track ip_src, expire 3600; sid:4000000005;)

drop ssh any any -> $MYSERVER 22 (msg:"DROP PUTTY incoming"; \
flow:to_server,established; ssh.softwareversion:"PUTTY"; \
xbits:set, badssh, track ip_src, expire 3600; sid:4000000007;)

Then the following rule simply drops any incoming traffic to that server that is on that ‘badssh’ list:

drop ssh any any -> $MYSERVER 22 (msg:"DROP BLACKLISTED"; \
xbits:isset, badssh, track ip_src; sid:4000000006;)

File Keywords

Suricata comes with several rule keywords to match on various file properties. They depend on properly configured
File Extraction.

filename

Matches on the file name.

Syntax:

filename:<string>;

Example:

filename:"secret";

fileext

Matches on the extension of a file name.

Syntax:

fileext:<string>;

Example:

fileext:"jpg";

filemagic

Matches on the information libmagic returns about a file.

Syntax:

filemagic:<string>;

Example:

78 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

filemagic:"executable for MS Windows";

Note: as libmagic versions differ between installations, the returned information may also slightly change. See also
#437.

filestore

Stores files to disk if the signature matched.

Syntax:

filestore:<direction>,<scope>;

direction can be:

• request/to_server: store a file in the request / to_server direction

• response/to_client: store a file in the response / to_client direction

• both: store both directions

scope can be:

• file: only store the matching file (for filename,fileext,filemagic matches)

• tx: store all files from the matching HTTP transaction

• ssn/flow: store all files from the TCP session/flow.

If direction and scope are omitted, the direction will be the same as the rule and the scope will be per file.

filemd5

Match file MD5 against list of MD5 checksums.

Syntax:

filemd5:[!]filename;

The filename is expanded to include the rule dir. In the default case it will become /etc/suricata/rules/filename. Use
the exclamation mark to get a negated match. This allows for white listing.

Examples:

filemd5:md5-blacklist;
filemd5:!md5-whitelist;

File format

The file format is simple. It’s a text file with a single md5 per line, at the start of the line, in hex notation. If there is
extra info on the line it is ignored.

Output from md5sum is fine:

2f8d0355f0032c3e6311c6408d7c2dc2 util-path.c
b9cf5cf347a70e02fde975fc4e117760 util-pidfile.c
02aaa6c3f4dbae65f5889eeb8f2bbb8d util-pool.c
dd5fc1ee7f2f96b5f12d1a854007a818 util-print.c

Just MD5’s are good as well:

4.10. File Keywords 79

Suricata User Guide, Release 4.0.0-beta1

2f8d0355f0032c3e6311c6408d7c2dc2
b9cf5cf347a70e02fde975fc4e117760
02aaa6c3f4dbae65f5889eeb8f2bbb8d
dd5fc1ee7f2f96b5f12d1a854007a818

Memory requirements

Each MD5 uses 16 bytes of memory. 20 Million MD5’s use about 310 MiB of memory.

See also: http://blog.inliniac.net/2012/06/09/suricata-md5-blacklisting/

filesize

Match on the size of the file as it is being transferred.

Syntax:

filesize:<value>;

Examples:

filesize:100; # exactly 100 bytes
filesize:100<>200; # greater than 100 and smaller than 200
filesize:>100; # greater than 100
filesize:<100; # smaller than 100

Note: For files that are not completely tracked because of packet loss or stream.depth being reached on the “greater
than” is checked. This is because Suricata can know a file is bigger than a value (it has seen some of it already), but it
can’t know if the final size would have been within a range, an exact value or smaller than a value.

Rule Thresholding

Thresholding can be configured per rule and also globally, see Global-Thresholds.

Note: mixing rule and global thresholds is not supported in 1.3 and before. See bug #425. For the state of the support
in 1.4 see Global thresholds vs rule thresholds

threshold

The threshold keyword can be used to control the rule’s alert frequency. It has 3 modes: threshold, limit and both.

Syntax:

threshold: type <threshold|limit|both>, track <by_src|by_dst>, count <N>, seconds <T>

type “threshold”

This type can be used to set a minimum threshold for a rule before it generates alerts. A threshold setting of N means
on the Nth time the rule matches an alert is generated.

Example:

80 Chapter 4. Suricata Rules

http://blog.inliniac.net/2012/06/09/suricata-md5-blacklisting/

Suricata User Guide, Release 4.0.0-beta1

alert tcp !$HOME_NET any -> $HOME_NET 25 (msg:"ET POLICY Inbound Frequent Emails - Possible Spambot Inbound"; \
flow:established; content:"mail from|3a|"; nocase; \
threshold: type threshold, track by_src, count 10, seconds 60; \
reference:url,doc.emergingthreats.net/2002087; classtype:misc-activity; sid:2002087; rev:10;)

This signature only generates an alert if we get 10 inbound emails or more from the same server in a time period of
one minute.

If a signature sets a flowbit, flowint, etc. those actions are still performed for each of the matches.

Rule actions drop (IPS mode) and reject are applied to each packet (not only the one that meets the
threshold condition).

type “limit”

This type can be used to make sure you’re not getting flooded with alerts. If set to limit N, it alerts at most N times.

Example:

alert http $HOME_NET any -> any $HTTP_PORTS (msg:"ET USER_AGENTS Internet Explorer 6 in use - Significant Security Risk"; \
flow:to_server,established; content:"|0d 0a|User-Agent|3a| Mozilla/4.0 (compatible|3b| MSIE 6.0|3b|"; \
threshold: type limit, track by_src, seconds 180, count 1; \
reference:url,doc.emergingthreats.net/2010706; classtype:policy-violation; sid:2010706; rev:7;)

In this example at most 1 alert is generated per host within a period of 3 minutes if MSIE 6.0 is detected.

If a signature sets a flowbit, flowint, etc. those actions are still performed for each of the matches.

Rule actions drop (IPS mode) and reject are applied to each packet (not only the one that meets the limit
condition).

type “both”

This type is a combination of the “threshold” and “limit” types. It applies both thresholding and limiting.

Example:

alert tcp $HOME_NET 5060 -> $EXTERNAL_NET any (msg:"ET VOIP Multiple Unauthorized SIP Responses TCP"; \
flow:established,from_server; content:"SIP/2.0 401 Unauthorized"; depth:24; \
threshold: type both, track by_src, count 5, seconds 360; \
reference:url,doc.emergingthreats.net/2003194; classtype:attempted-dos; sid:2003194; rev:6;)

This alert will only generate an alert if within 6 minutes there have been 5 or more “SIP/2.0 401 Unauthorized”
responses, and it will alert only once in that 6 minutes.

If a signature sets a flowbit, flowint, etc. those actions are still performed for each of the matches.

Rule actions drop (IPS mode) and reject are applied to each packet.

detection_filter

The detection_filter keyword can be used to alert on every match after a threshold has been reached. It differs from
the threshold with type threshold in that it generates an alert for each rule match after the initial threshold has been
reached, where the latter will reset it’s internal counter and alert again when the threshold has been reached again.

Syntax:

4.11. Rule Thresholding 81

Suricata User Guide, Release 4.0.0-beta1

detection_filter: track <by_src|by_dst>, count <N>, seconds <T>

Example:

alert http $EXTERNAL_NET any -> $HOME_NET any \
(msg:"ET WEB_SERVER WebResource.axd access without t (time) parameter - possible ASP padding-oracle exploit"; \
flow:established,to_server; content:"GET"; http_method; content:"WebResource.axd"; http_uri; nocase; \
content:!"&t="; http_uri; nocase; content:!"&|3b|t="; http_uri; nocase; \
detection_filter:track by_src,count 15,seconds 2; \
reference:url,netifera.com/research/; reference:url,www.microsoft.com/technet/security/advisory/2416728.mspx; \
classtype:web-application-attack; sid:2011807; rev:5;)

Alerts each time after 15 or more matches have occurred within 2 seconds.

If a signature sets a flowbit, flowint, etc. those actions are still performed for each of the matches.

Rule actions drop (IPS mode) and reject are applied to each packet that generate an alert

DNS Keywords

There are some more content modifiers (If you are unfamiliar with content modifiers, please visit the page Payload
Keywords These ones make sure the signature checks a specific part of the network-traffic.

dns_query

With dns_query the DNS request queries are inspected. The dns_query keyword works a bit different from the normal
content modifiers. When used in a rule all contents following it are affected by it. Example:

alert dns any any -> any any (msg:”Test dns_query option”; dns_query; content:”google”; nocase; sid:1;)

The dns_query keyword affects all following contents, until pkt_data is used or it reaches the end of the rule.

Normalized Buffer

Buffer contains literal domain name

• <length> values (as seen in a raw DNS request) are literal ‘.’ characters

• no leading <length> value

• No terminating NULL (0x00) byte (use a negated relative isdataat to match the end)

Example DNS request for “mail.google.com” (for readability, hex values are encoded between pipes):

DNS query on the wire (snippet):

|04|mail|06|google|03|com|00|

dns_query buffer:

82 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

mail.google.com

SSL/TLS Keywords

Suricata comes with several rule keywords to match on various properties of TLS/SSL handshake. Matches are string
inclusion matches.

tls_cert_subject

Match TLS/SSL certificate Subject field.

Examples:

tls_cert_subject; content:"CN=*.googleusercontent.com"; isdataat:!1,relative;
tls_cert_subject; content:"google.com"; nocase; pcre:"/google.com$/";

tls_cert_subject is a ‘Sticky buffer’.

tls_cert_subject can be used as fast_pattern.

tls_cert_issuer

Match TLS/SSL certificate Issuer field.

Examples:

tls_cert_issuer; content:"WoSign"; nocase; isdataat:!1,relative;
tls_cert_issuer; content:"StartCom"; nocase; pcre:"/StartCom$/";

tls_cert_issuer is a ‘Sticky buffer’.

tls_cert_issuer can be used as fast_pattern.

tls_cert_serial

Match on the serial number in a certificate.

Example:

alert tls any any -> any any (msg:"match cert serial"; \
tls_cert_serial; content:"5C:19:B7:B1:32:3B:1C:A1"; sid:200012;)

tls_cert_serial is a ‘Sticky buffer’.

tls_cert_serial can be used as fast_pattern.

tls_sni

Match TLS/SSL Server Name Indication field.

Examples:

tls_sni; content:"oisf.net"; nocase; isdataat:!1,relative;
tls_sni; content:"oisf.net"; nocase; pcre:"/oisf.net$/";

4.13. SSL/TLS Keywords 83

Suricata User Guide, Release 4.0.0-beta1

tls_sni is a ‘Sticky buffer’.

tls_sni can be used as fast_pattern.

tls_cert_notbefore

Match on the NotBefore field in a certificate.

Example:

alert tls any any -> any any (msg:"match cert NotBefore"; \
tls_cert_notbefore:1998-05-01<>2008-05-01; sid:200005;)

tls_cert_notafter

Match on the NotAfter field in a certificate.

Example:

alert tls any any -> any any (msg:"match cert NotAfter"; \
tls_cert_notafter:>2015; sid:200006;)

tls_cert_expired

Match returns true if certificate is expired. It evaluates the validity date from the certificate.

Usage:

tls_cert_expired;

tls_cert_valid

Match returns true if certificate is not expired. It only evaluates the validity date. It does not do cert chain validation.
It is the opposite of tls_cert_expired.

Usage:

tls_cert_valid;

tls.version

Match on negotiated TLS/SSL version.

Example values: “1.0”, “1.1”, “1.2”

tls.subject

Match TLS/SSL certificate Subject field.

example:

tls.subject:"CN=*.googleusercontent.com"

84 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

Case sensitve, can’t use ‘nocase’.

Legacy keyword. tls_cert_subject is the replacement.

tls.issuerdn

match TLS/SSL certificate IssuerDN field

example:

tls.issuerdn:!"CN=Google-Internet-Authority"

Case sensitve, can’t use ‘nocase’.

Legacy keyword. tls_cert_issuer is the replacement.

tls.fingerprint

match TLS/SSL certificate SHA1 fingerprint

example:

tls.fingerprint:!"f3:40:21:48:70:2c:31:bc:b5:aa:22:ad:63:d6:bc:2e:b3:46:e2:5a"

Case sensitive, can’t use ‘nocase’.

The tls.fingerprint buffer is lower case so you must use lower case letters for this to match.

tls.store

store TLS/SSL certificate on disk

ssl_state

The ssl_state keyword matches the state of the SSL connection. The possible states are client_hello,
server_hello, client_keyx, server_keyx and unknown. You can specify several states with | (OR)
to check for any of the specified states.

Negation support is not available yet, see https://redmine.openinfosecfoundation.org/issues/1231

Modbus Keyword

The modbus keyword can be used for matching on various properties of Modbus requests.

There are two ways of using this keyword:

• matching on functions properties with the setting “function”;

• matching on directly on data access with the setting “access”.

With the setting function, you can match on:

• an action based on a function code field and a sub-function code when applicable;

• one of three categories of Modbus functions;

• public functions that are publicly defined (setting “public”)

4.14. Modbus Keyword 85

https://redmine.openinfosecfoundation.org/issues/1231

Suricata User Guide, Release 4.0.0-beta1

• user-defined functions (setting “user”)

• reserved functions that are dedicated to proprietary extensions of Modbus (keyword “reserved”)

• one of the two sub-groups of public functions:

– assigned functions whose definition is already given in the Modbus specification (keyword “assigned”);

– unassigned functions, which are reserved for future use (keyword “unassigned”).

Syntax:

modbus: function <value>
modbus: function <value>, subfunction <value>
modbus: function [!] <assigned | unassigned | public | user | reserved | all>

Sign ‘!’ is negation

Examples:

modbus: function 21 # Write File record function
modbus: function 4, subfunction 4 # Force Listen Only Mode (Diagnostics) function
modbus: function assigned # defined by Modbus Application Protocol Specification V1.1b3
modbus: function public # validated by the Modbus.org community
modbus: function user # internal use and not supported by the specification
modbus: function reserved # used by some companies for legacy products and not available for public use
modbus: function !reserved # every function but reserved function

With the access setting, you can match on:

• a type of data access (read or write);

• one of primary tables access (Discretes Input, Coils, Input Registers and Holding Registers);

• a range of addresses access;

• a written value.

Syntax:

modbus: access <read | write>
modbus: access <read | write> <discretes | coils | input | holding>
modbus: access <read | write> <discretes | coils | input | holding>, address <value>
modbus: access <read | write> <discretes | coils | input | holding>, address <value>, value <value>

With _<value>_ setting matches on the address or value as it is being accessed or written as follows:

address 100 # exactly address 100
address 100<>200 # greater than address 100 and smaller than address 200
address >100 # greater than address 100
address <100 # smaller than address 100

Examples:

modbus: access read # Read access
modbus: access write # Write access
modbus: access read input # Read access to Discretes Input table
modbus: access write coils # Write access to Coils table
modbus: access read discretes, address <100 # Read access at address smaller than 100 of Discretes Input table
modbus: access write holding, address 500, value >200 # Write value greather than 200 at address 500 of Holding Registers table

(cf. http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf)

Note: Address of read and write are starting at 1. So if your system is using a start at 0, you need to add 1 the address
values.

86 Chapter 4. Suricata Rules

http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf

Suricata User Guide, Release 4.0.0-beta1

Note: According to MODBUS Messaging on TCP/IP Implementation Guide V1.0b, it is recommended to keep the
TCP connection opened with a remote device and not to open and close it for each MODBUS/TCP transaction. In that
case, it is important to set the depth of the stream reassembling as unlimited (stream.reassembly.depth: 0)

(cf. http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf)

Paper and presentation (in french) on Modbus support are available : http://www.ssi.gouv.fr/agence/publication/detection-
dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/

DNP3 Keywords

The DNP3 keywords can be used to match on fields in decoded DNP3 messages. The keywords are based on Snort’s
DNP3 keywords and aim to be 100% compatible.

dnp3_func

This keyword will match on the application function code found in DNP3 request and responses. It can be specified
as the integer value or the symbolic name of the function code.

Syntax

dnp3_func:<value>;

Where value is one of:

• An integer value between 0 and 255 inclusive.

• Function code name:

– confirm

– read

– write

– select

– operate

– direct_operate

– direct_operate_nr

– immed_freeze

– immed_freeze_nr

– freeze_clear

– freeze_clear_nr

– freeze_at_time

– freeze_at_time_nr

– cold_restart

– warm_restart

– initialize_data

4.15. DNP3 Keywords 87

http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
http://www.ssi.gouv.fr/agence/publication/detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/
http://www.ssi.gouv.fr/agence/publication/detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/

Suricata User Guide, Release 4.0.0-beta1

– initialize_appl

– start_appl

– stop_appl

– save_config

– enable_unsolicited

– disable_unsolicited

– assign_class

– delay_measure

– record_current_time

– open_file

– close_file

– delete_file

– get_file_info

– authenticate_file

– abort_file

– activate_config

– authenticate_req

– authenticate_err

– response

– unsolicited_response

– authenticate_resp

dnp3_ind

This keyword matches on the DNP3 internal indicator flags in the response application header.

Syntax

dnp3_ind:<flag>{,<flag>...}

Where flag is the name of the internal indicator:

• all_stations

• class_1_events

• class_2_events

• class_3_events

• need_time

• local_control

• device_trouble

88 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

• device_restart

• no_func_code_support

• object_unknown

• parameter_error

• event_buffer_overflow

• already_executing

• config_corrupt

• reserved_2

• reserved_1

This keyword will match of any of the flags listed are set. To match on multiple flags (AND type match), use dnp3_ind
for each flag that must be set.

Examples

dnp3_ind:all_stations;

dnp3_ind:class_1_events,class_2_events;

dnp3_obj

This keyword matches on the DNP3 application data objects.

Syntax

dnp3_obj:<group>,<variation>

Where <group> and <variation> are integer values between 0 and 255 inclusive.

dnp3_data

This keyword will cause the following content options to match on the re-assembled application buffer. The reassem-
bled application buffer is a DNP3 fragment with CRCs removed (which occur every 16 bytes), and will be the complete
fragment, possibly reassembled from multiple DNP3 link layer frames.

Syntax

dnp3_data;

Example

dnp3_data; content:|c3 06|;

4.15. DNP3 Keywords 89

Suricata User Guide, Release 4.0.0-beta1

ENIP/CIP Keywords

The enip_command and cip_service keywords can be used for matching on various properties of ENIP requests.

There are three ways of using this keyword:

• matching on ENIP command with the setting “enip_command”;

• matching on CIP Service with the setting “cip_service”.

• matching both the ENIP command and the CIP Service with “enip_command” and “cip_service” together

For the ENIP command, we are matching against the command field found in the ENIP encapsulation.

For the CIP Service, we use a maximum of 3 comma seperated values representing the Service, Class and Attribute.
These values are described in the CIP specification. CIP Classes are associated with their Service, and CIP Attributes
are associated with their Service. If you only need to match up until the Service, then only provide the Service value.
If you want to match to the CIP Attribute, then you must provide all 3 values.

Syntax:

enip_command:<value>
cip_service:<value(s)>
enip_command:<value>, cip_service:<value(s)>

Examples:

enip_command:99
cip_service:75
cip_service:16,246,6
enip_command:111, cip_service:5

(cf. http://read.pudn.com/downloads166/ebook/763211/EIP-CIP-V1-1.0.pdf)

Information on the protocol can be found here: http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-
wp001_-en-p.pdf

Generic App Layer Keywords

app-layer-protocol

Match on the detected app-layer protocol.

Syntax:

app-layer-protocol:[!]<protocol>;

Examples:

app-layer-protocol:ssh;
app-layer-protocol:!tls;
app-layer-protocol:failed;

A special value ‘failed’ can be used for matching on flows in which protocol detection failed. This can happen if
Suricata doesn’t know the protocol or when certain ‘bail out’ conditions happen.

90 Chapter 4. Suricata Rules

http://read.pudn.com/downloads166/ebook/763211/EIP-CIP-V1-1.0.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-wp001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-wp001_-en-p.pdf

Suricata User Guide, Release 4.0.0-beta1

Bail out conditions

Protocol detection gives up in several cases:

• both sides are inspected and no match was found

• side A detection failed, side B has no traffic at all (e.g. FTP data channel)

• side A detection failed, side B has so little data detection is inconclusive

In these last 2 cases the app-layer-event:applayer_proto_detection_skipped is set.

app-layer-event

Match on events generated by the App Layer Parsers and the protocol detection engine.

Syntax:

app-layer-event:<event name>;

Examples:

app-layer-event:applayer_mismatch_protocol_both_directions;
app-layer-event:http.gzip_decompression_failed;

Protocol Detection

applayer_mismatch_protocol_both_directions

The toserver and toclient directions have different protocols. For example a client talking HTTP to a SSH server.

applayer_wrong_direction_first_data

Some protocol implementations in Suricata have a requirement with regards to the first data direction. The HTTP
parser is an example of this.

https://redmine.openinfosecfoundation.org/issues/993

applayer_detect_protocol_only_one_direction

Protocol detection only succeeded in one direction. For FTP and SMTP this is expected.

applayer_proto_detection_skipped

Protocol detection was skipped because of Bail out conditions.

Lua Scripting

Syntax:

4.18. Lua Scripting 91

https://redmine.openinfosecfoundation.org/issues/993

Suricata User Guide, Release 4.0.0-beta1

lua:[!]<scriptfilename>;

The script filename will be appended to your default rules location.

The script has 2 parts, an init function and a match function. First, the init.

Init function

function init (args)
local needs = {}
needs["http.request_line"] = tostring(true)
return needs

end

The init function registers the buffer(s) that need inspection. Currently the following are available:

• packet – entire packet, including headers

• payload – packet payload (not stream)

• http.uri

• http.uri.raw

• http.request_line

• http.request_headers

• http.request_headers.raw

• http.request_cookie

• http.request_user_agent

• http.request_body

• http.response_headers

• http.response_headers.raw

• http.response_body

• http.response_cookie

All the HTTP buffers have a limitation: only one can be inspected by a script at a time.

Match function

function match(args)
a = tostring(args["http.request_line"])
if #a > 0 then

if a:find("^POST%s+/.*%.php%s+HTTP/1.0$") then
return 1

end
end

return 0
end

The script can return 1 or 0. It should return 1 if the condition(s) it checks for match, 0 if not.

Entire script:

92 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

function init (args)
local needs = {}
needs["http.request_line"] = tostring(true)
return needs

end

function match(args)
a = tostring(args["http.request_line"])
if #a > 0 then

if a:find("^POST%s+/.*%.php%s+HTTP/1.0$") then
return 1

end
end

return 0
end

return 0

Normalized Buffers

HTTP-uri normalization

The uri has two appearances in Suricata: the raw_uri and the normalized uri. The space for example can be indicated
with the heximal notation %20. To convert this notation in a space, means normalizing it. It is possible though to
match specific on the characters %20 in a uri. This means matching on the raw_uri. The raw_uri and the normalized
uri are separate buffers. So, the raw_uri inspects the raw_uri buffer and can not inspect the normalized buffer.

A packet consists of raw data. HTTP and reassembly make a copy of those kinds of packets data. They erase anomalous
content, combine packets etcetera. What remains is a called the ‘normalized buffer’.

Example:

4.19. Normalized Buffers 93

Suricata User Guide, Release 4.0.0-beta1

Because the data is being normalized, it is not what it used to be; it is an interpretation. Normalized buffers are: all
HTTP-keywords, reassembled streams, TLS-, SSL-, SSH-, FTP- and dcerpc-buffers.

Differences From Snort

Overview

This document is intended to highlight the major differences between Suricata and Snort that apply to rules and rule
writing.

Where not specified, the statements below apply to Suricata. In general, references to Snort refer to the version 2.9
branch.

Contents

Contents

• Differences From Snort
– Overview
– Contents
– Automatic Protocol Detection
– urilen Keyword
– http_uri Buffer
– http_header Buffer
– http_cookie Buffer
– New HTTP keywords
– byte_extract Keyword
– isdataat Keyword
– Relative PCRE
– tls* Keywords
– dns_query Keyword
– IP Reputation and iprep Keyword
– Flowbits
– flowbits:noalert;
– Negated Content Match Special Case
– File Extraction
– Lua Scripting
– Fast Pattern
– Don’t Cross The Streams
– Alerts
– Buffer Reference Chart

Automatic Protocol Detection

• Suricata does automatic protocol detection of the following application layer protocols:

– dcerpc

– dnp3

– dns

94 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

– http

– imap (detection only by default; no parsing)

– ftp

– modbus (disabled by default; minimalist probe parser; can lead to false positives)

– msn (detection only by default; no parsing)

– smb

– smb2 (disabled internally inside the engine)

– smtp

– ssh

– tls (SSLv2, SSLv3, TLSv1, TLSv1.1 and TLSv1.2)

• In Suricata, protocol detection is port agnostic (in most cases). In Snort, in order for the http_inspect and
other preprocessors to be applied to traffic, it has to be over a configured port.

– Some configurations for app-layer in the Suricata yaml can/do by default specify specific destination ports
(e.g. DNS)

– You can look on ‘any’ port without worrying about the performance impact that you would have to
be concerned about with Snort.

• If the traffic is detected as HTTP by Suricata, the http_* buffers are populated and can be used, regardless of
port(s) specified in the rule.

• You don’t have to check for the http protocol (i.e. alert http ...) to use the http_* buffers although it
is recommended.

• If you are trying to detect legitimate (supported) application layer protocol traffic and don’t want to look on
specific port(s), the rule should be written as alert <protocol> ... with any in place of the usual
protocol port(s). For example, when you want to detect HTTP traffic and don’t want to limit detection to
a particular port or list of ports, the rules should be written as alert http ... with any in place of
$HTTP_PORTS.

– You can also use app-layer-protocol:<protocol>; inside the rule instead.

So, instead of this Snort rule:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS ...

Do this for Suricata:

alert http $HOME_NET -> $EXTERNAL_NET any ...

Or:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (app-layer-protocol:http; ...

urilen Keyword

• Ranges given in the urilen keyword are inclusive for Snort but not inclusive for Suricata.

Example: urilen:2<>10

– Snort interprets this as, “the URI length must be greater than or equal to 2, and less than or equal to
10”.

4.20. Differences From Snort 95

Suricata User Guide, Release 4.0.0-beta1

– Suricata interprets this as “the URI length must be greater than 2 and less than 10”.

– There is a request to have Suricata behave like Snort in future versions –
https://redmine.openinfosecfoundation.org/issues/1416

* Currently on hold

• By default, with Suricata, urilen applies to the normalized buffer

– Use ,raw for raw buffer

– e.g. urilen:>20,raw;

• By default, with Snort, urilen applies to the raw buffer

– Use ,norm for normalized buffer

– e.g. urilen:>20,norm;

http_uri Buffer

• In Snort, the http_uri buffer normalizes ‘+’ characters (0x2B) to spaces (0x20).

– Suricata can do this as well but you have to explicitly set query-plusspace-decode: yes in the
libhtp section of Suricata’s yaml file.

• https://redmine.openinfosecfoundation.org/issues/1035

• https://github.com/inliniac/suricata/pull/620

http_header Buffer

• In Snort, the http_header buffer includes the CRLF CRLF (0x0D 0x0A 0x0D 0x0A) that separates the end
of the last HTTP header from the beginning of the HTTP body. Suricata includes a CRLF after the last header in
the http_header buffer but not an extra one like Snort does. If you want to match the end of the buffer, use
either the http_raw_header buffer, a relative isdataat (e.g. isdataat:!1,relative) or a PCRE
(although PCRE will be worse on performance).

• Suricata will include CRLF CRLF at the end of the http_raw_header buffer like Snort does.

• Snort will include a leading CRLF in the http_header buffer of server responses (but not client requests).
Suricata does not have the leading CRLF in the http_header buffer of the server response or client request.

• In the http_header buffer, Suricata will normalize HTTP header lines such that there is a single space (0x20)
after the colon (‘:’) that separates the header name from the header value; this single space replaces zero or more
whitespace characters (including tabs) that may be present in the raw HTTP header line immediately after the
colon. If the extra whitespace (or lack thereof) is important for matching, use the http_raw_header buffer
instead of the http_header buffer.

• Snort will also normalize superfluous whitespace between the header name and header value like Suricata does
but only if there is at least one space character (0x20 only so not 0x90) immediately after the colon. This means
that, unlike Suricata, if there is no space (or if there is a tab) immediately after the colon before the header value,
the content of the header line will remain unchanged in the http_header buffer.

• When there are duplicate HTTP headers (referring to the header name only, not the value), the normalized buffer
(http_header) will concatenate the values in the order seen (from top to bottom), with a comma and space
(”, ”) between each of them. If this hinders detection, use the http_raw_header buffer instead.

Example request:

96 Chapter 4. Suricata Rules

https://redmine.openinfosecfoundation.org/issues/1416
https://redmine.openinfosecfoundation.org/issues/1035
https://github.com/inliniac/suricata/pull/620

Suricata User Guide, Release 4.0.0-beta1

GET /test.html HTTP/1.1
Content-Length: 44
Accept: */*
Content-Length: 55

The Content-Length header line becomes this in the http_header buffer:

Content-Length: 44, 55

• The HTTP ‘Cookie’ and ‘Set-Cookie’ headers are NOT included in the http_header buffer; instead they are
extracted and put into their own buffer – http_cookie. See the http_cookie Buffer section.

• The HTTP ‘Cookie’ and ‘Set-Cookie’ headers ARE included in the http_raw_header buffer so if you are
trying to match on something like particular header ordering involving (or not involving) the HTTP Cookie
headers, use the http_raw_header buffer.

• If ‘enable_cookie’ is set for Snort, the HTTP Cookie header names and trailing CRLF (i.e. “Cookie: \r\n” and
“Set-Cooke \r\n”) are kept in the http_header buffer. This is not the case for Suricata which removes the
entire “Cookie” or “Set-Cookie” line from the http_header buffer.

• Other HTTP headers that have their own buffer (http_user_agent, http_host) are not removed from
the http_header buffer like the Cookie headers are.

• When inspecting server responses and file_data is used, content matches in http_* buffers should come
before file_data unless you use pkt_data to reset the cursor before matching in http_* buffers. Snort
will not complain if you use http_* buffers after file_data is set.

http_cookie Buffer

• The http_cookie buffer will NOT include the header name, colon, or leading whitespace. i.e. it will not
include “Cookie: ” or “Set-Cookie: ”.

• The http_cookie buffer does not include a CRLF (0x0D 0x0A) at the end. If you want to match the end of
the buffer, use a relative isdataat or a PCRE (although PCRE will be worse on performance).

• There is no http_raw_cookie buffer in Suricata. Use http_raw_header instead.

• You do not have to configure anything special to use the ‘http_cookie’ buffer in Suricata. This is different from
Snort where you have to set enable_cookie in the http_inspect_server preprocessor config in order
to have the http_cookie buffer treated separate from the http_header buffer.

• If Snort has ‘enable_cookie’ set and multiple “Cookie” or “Set-Cookie” headers are seen, it will concatenate
them together (with no separator between them) in the order seen from top to bottom.

• If a request contains multiple “Cookie” or “Set-Cookie” headers, the values will be concatenated in the Suricata
http_cookie buffer, in the order seen from top to bottom, with a comma and space (”, ”) between each of
them.

Example request:

GET /test.html HTTP/1.1
Cookie: monster
Accept: */*
Cookie: elmo

Suricata http_cookie buffer contents:

monster, elmo

Snort http_cookie buffer contents:

4.20. Differences From Snort 97

Suricata User Guide, Release 4.0.0-beta1

monsterelmo

• Corresponding PCRE modifier: C (same as Snort)

New HTTP keywords

Suricata supports several HTTP keywords that Snort doesn’t have.

Examples are http_user_agent, http_host and http_content_type.

See HTTP Keywords for all HTTP keywords.

byte_extract Keyword

• Suricata supports byte_extract from http_* buffers, including http_header which does not always
work as expected in Snort.

• In Suricata, variables extracted using byte_extract must be used in the same buffer, otherwise they will
have the value “0” (zero). Snort does allow cross-buffer byte extraction and usage.

• Be sure to always positively and negatively test Suricata rules that use byte_extract and byte_test to
verify that they work as expected.

isdataat Keyword

• The rawbytes keyword is supported in the Suricata syntax but doesn’t actually do anything.

• Absolute isdataat checks will succeed if the offset used is less than the size of the inspection buffer. This is
true for Suricata and Snort.

• For relative isdataat checks, there is a 1 byte difference in the way Snort and Suricata do the comparisons.

– Suricata will succeed if the relative offset is less than or equal to the size of the inspection buffer. This is
different from absolute isdataat checks.

– Snort will succeed if the relative offset is less than the size of the inspection buffer, just like absolute
isdataat checks.

– Example - to check that there is no data in the inspection buffer after the last content match:

* Snort: isdataat:!0,relative;

* Suricata: isdataat:!1,relative;

• With Snort, the “inspection buffer” used when checking an isdataat keyword is generally the packet/segment
with some exceptions:

– With PAF enabled the PDU is examined instead of the packet/segment. When file_data or
base64_data has been set, it is those buffers (unless rawbytes is set).

– With some preprocessors - modbus, gtp, sip, dce2, and dnp3 - the buffer can be particular portions of those
protocols (unless rawbytes is set).

– With some preprocessors - rpc_decode, ftp_telnet, smtp, and dnp3 - the buffer can be particular decoded
portions of those protocols (unless rawbytes is set).

• With Suricata, the “inspection buffer” used when checking an absolute isdataat keyword is the
packet/segment if looking at a packet (e.g. alert tcp-pkt...) or the reassembled stream segments.

98 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

• In Suricata, a relative isdataat keyword will apply to the buffer of the previous content match. So if the
previous content match is a http_* buffer, the relative isdataat applies to that buffer, starting from the end
of the previous content match in that buffer. Snort does not behave like this!

• For example, this Suricata rule looks for the string ”.exe” at the end of the URI; to do the same thing in the
normalized URI buffer in Snort you would have to use a PCRE – pcre:"/\x2Eexe$/U";

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:".EXE File Download Request"; flow:established,to_server; content:"GET"; http_method; content:".exe"; http_uri; isdataat:!1,relative; priority:3; sid:18332111;)

• If you are unclear about behavior in a particular instance, you are encouraged to positively and negatively test
your rules that use an isdataat keyword.

Relative PCRE

• You can do relative PCRE matches in normalized/special buffers with Suricata. Example:

content:".php?sign="; http_uri; pcre:"/^[a-zA-Z0-9]{8}$/UR";

• With Snort you can’t combine the “relative” PCRE option (‘R’) with other buffer options like normalized URI
(‘U’) – you get a syntax error.

tls* Keywords

In addition to TLS protocol identification, Suricata supports the storing of certificates to disk, verifying the valid-
ity dates on certificates, matching against the calculated SHA1 fingerprint of certificates, and matching on certain
TLS/SSL certificate fields including the following:

• Negotiated TLS/SSL version.

• Certificate Subject field.

• Certificate Issuer field.

• Certificate SNI Field

For details see SSL/TLS Keywords.

dns_query Keyword

• Sets the detection pointer to the DNS query.

• Works like file_data does (“sticky buffer”) but for a DNS request query.

• Use pkt_data to reset the detection pointer to the beginning of the packet payload.

• See DNS Keywords for details.

IP Reputation and iprep Keyword

• Snort has the “reputation” preprocessor that can be used to define whitelist and blacklist files of IPs which are
used generate GID 136 alerts as well as block/drop/pass traffic from listed IPs depending on how it is configured.

• Suricata also has the concept of files with IPs in them but provides the ability to assign them:

– Categories

– Reputation score

4.20. Differences From Snort 99

Suricata User Guide, Release 4.0.0-beta1

• Suricata rules can leverage these IP lists with the iprep keyword that can be configured to match on:

– Direction

– Category

– Value (reputation score)

• Reputation

• IP Reputation Config

• IP Reputation Rules

• IP Reputation Format

• http://blog.inliniac.net/2012/11/21/ip-reputation-in-suricata/

Flowbits

• Suricata fully supports the setting and checking of flowbits (including the same flowbit) on the same
packet/stream. Snort does not always allow for this.

• In Suricata, flowbits:isset is checked after the fast pattern match but before other content matches. In
Snort, flowbits:isset is checked in the order it appears in the rule, from left to right.

• If there is a chain of flowbits where multiple rules set flowbits and they are dependent on each other, then the
order of the rules or the sid values can make a difference in the rules being evaluated in the proper order and
generating alerts as expected. See bug 1399 - https://redmine.openinfosecfoundation.org/issues/1399.

• Flow Keywords

flowbits:noalert;

A common pattern in existing rules is to use flowbits:noalert; to make sure a rule doesn’t generate an alert if
it matches.

Suricata allows using just noalert; as well. Both have an identical meaning in Suricata.

Negated Content Match Special Case

• For Snort, a negated content match where the starting point for searching is at or beyond the end of the inspection
buffer will never return true.

– For negated matches, you want it to return true if the content is not found.

– This is believed to be a Snort bug rather than an engine difference but it was reported to Sourcefire and
acknowledged many years ago indicating that perhaps it is by design.

– This is not the case for Suricata which behaves as expected.

Example HTTP request:

POST /test.php HTTP/1.1
Content-Length: 9

user=suri

This rule snippet will never return true in Snort but will in Suricata:

100 Chapter 4. Suricata Rules

http://blog.inliniac.net/2012/11/21/ip-reputation-in-suricata/
https://redmine.openinfosecfoundation.org/issues/1399

Suricata User Guide, Release 4.0.0-beta1

content:!"snort"; offset:10; http_client_body;

File Extraction

• Suricata has the ability to match on files from HTTP and SMTP streams and log them to disk.

• Snort has the “file” preprocessor that can do something similar but it is experimental, development of it has been
stagnant for years, and it is not something that should be used in a production environment.

• Files can be matched on using a number of keywords including:

– filename

– fileext

– filemagic

– filesize

– filemd5

– filesha1

– filesha256

– filesize

– See File Keywords for a full list.

• The filestore keyword tells Suricata to save the file to disk.

• Extracted files are logged to disk with meta data that includes things like timestamp, src/dst IP, protocol, src/dst
port, HTTP URI, HTTP Host, HTTP Referer, filename, file magic, md5sum, size, etc.

• There are a number of configuration options and considerations (such as stream reassembly depth and libhtp
body-limit) that should be understood if you want fully utilize file extraction in Suricata.

• File Keywords

• File Extraction

• http://blog.inliniac.net/2011/11/29/file-extraction-in-suricata/

• http://blog.inliniac.net/2014/11/11/smtp-file-extraction-in-suricata/

Lua Scripting

• Suricata has the lua (or luajit) keyword which allows for a rule to reference a Lua script that can access the
packet, payload, HTTP buffers, etc.

• Provides powerful flexibility and capabilities that Snort does not have.

• Lua Scripting

Fast Pattern

• Snort’s fast pattern matcher is always case insensitive; Suricata’s is case sensitive unless ‘nocase’ is set on the
content match used by the fast pattern matcher.

4.20. Differences From Snort 101

http://blog.inliniac.net/2011/11/29/file-extraction-in-suricata/
http://blog.inliniac.net/2014/11/11/smtp-file-extraction-in-suricata/

Suricata User Guide, Release 4.0.0-beta1

• Snort will truncate fast pattern matches based on the max-pattern-len config (default no limit) unless
fast_pattern:only is used in the rule. Suricata does not do any automatic fast pattern truncation cannot
be configured to do so.

• Just like in Snort, in Suricata you can specify a substring of the content string to be use as the fast pattern match.
e.g. fast_pattern:5,20;

• In Snort, leading NULL bytes (0x00) will be removed from content matches when determining/using the longest
content match unless fast_pattern is explicitly set. Suricata does not truncate anything, including NULL
bytes.

• Snort does not allow for all http_* buffers to be used for the fast pattern match (e.g. http_raw_*,
http_method, http_cookie, etc.). Suricata lets you use any ‘http_*’ buffer you want for the fast pat-
tern match, including http_raw_*’ and ‘‘http_cookie buffers.

• Suricata supports the fast_pattern:only syntax but technically it is not really implemented; the only
is silently ignored when encountered in a rule. It is still recommended that you use fast_pattern:only
where appropriate in case this gets implemented in the future and/or if the rule will be used by Snort as well.

• With Snort, unless fast_pattern is explicitly set, content matches in normalized HTTP Inspect buffers
(e.g. http content modifiers such http_uri, http_header, etc.) take precedence over non-HTTP Inspect
content matches, even if they are shorter. Suricata does the same thing and gives a higher ‘priority’ (precedence)
to http_* buffers (except for http_method, http_stat_code, and http_stat_msg).

• See Suricata Fast Pattern Determination Explained for full details on how Suricata automatically determines
which content to use as the fast pattern match.

• When in doubt about what is going to be use as the fast pattern match by Suricata, set fast_pattern ex-
plicitly in the rule and/or run Suricata with the --engine-analysis switch and view the generated file
(rules_fast_pattern.txt).

• Like Snort, the fast pattern match is checked before flowbits in Suricata.

• Using Hyperscan as the MPM matcher (mpm-algo setting) for Suricata can greatly improve performance,
especially when it comes to fast pattern matching. Hyperscan will also take in to account depth and offset when
doing fast pattern matching, something the other algorithims and Snort do not do.

• Fast Pattern

Don’t Cross The Streams

Suricata will examine network traffic as individual packets and, in the case of TCP, as part of a (reassembled) stream.
However, there are certain rule keywords that only apply to packets only (dsize, flags, ttl) and certain ones that
only apply to streams only (http_*) and you can’t mix packet and stream keywords. Rules that use packet keywords
will inspect individual packets only and rules that use stream keywords will inspect streams only. Snort is a little more
forgiving when you mix these – for example, in Snort you can use dsize (a packet keyword) with http_* (stream
keywords) and Snort will allow it although, because of dsize, it will only apply detection to individual packets
(unless PAF is enabled then it will apply it to the PDU).

If dsize is in a rule that also looks for a stream-based application layer protocol (e.g. http), Suricata will not match
on the first application layer packet since dsize make Suricata evaluate the packet and protocol detection doesn’t
happen until after the protocol is checked for that packet; subsequent packets in that flow should have the application
protocol set appropriately and will match rules using dsize and a stream-based application layer protocol.

If you need to check sizes on a stream in a rule that uses a stream keyword, or in a rule looking for a stream-based
application layer protocol, consider using the stream_size keyword and/or isdataat.

Suricata also supports these protocol values being used in rules and Snort does not:

• tcp-pkt – example:

102 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-beta1

– alert tcp-pkt ...

– This tells Suricata to only apply the rule to TCP packets and not the (reassembled) stream.

• tcp-stream – example:

– alert tcp-stream ...

– This tells Suricata to inspect the (reassembled) TCP stream only.

Alerts

• In Snort, the number of alerts generated for a packet/stream can be limited by the event_queue configuration.

• Suricata has an internal hard-coded limit of 15 alerts per packet/stream (and this cannot be configured); all rules
that match on the traffic being analyzed will fire up to that limit.

• Sometimes Suricata will generate what appears to be two alerts for the same TCP packet. This happens when
Suricata evaluates the packet by itself and as part of a (reassembled) stream.

Buffer Reference Chart

Buffer Snort 2.9.x
Support?

Suricata
Support?

PCRE
flag

Can be used
as Fast
Pattern?

Suricata Fast Pattern
Priority (lower number is
higher priority)

content
(no
modifier)

YES YES <none> YES 3

http_methodYES YES M Suricata only 3
http_stat_codeYES YES S Suricata only 3
http_stat_msgYES YES Y Suricata only 3
uricon-
tent

YES but
deprecated, use
http_uri instead

YES but
deprecated, use
http_uri instead

U YES 2

http_uri YES YES U YES 2
http_raw_uriYES YES I Suricata only 2
http_header YES YES H YES 2
http_raw_headerYES YES D Suricata only 2
http_cookie YES YES C Suricata only 2
http_raw_cookieYES NO (use

http_raw_header
instead)

K NO n/a

http_host NO YES W Suricata only 2
http_raw_hostNO YES Z Suricata only 2
http_client_bodyYES YES P YES 2
http_server_bodyNO YES Q Suricata only 2
http_user_agentNO YES V Suricata only 2
dns_query NO YES n/a* Suricata only 2
tls_sni NO YES n/a* Suricata only 2
tls_cert_issuerNO YES n/a* Suricata only 2
tls_cert_subjectNO YES n/a* Suricata only 2
file_data YES YES n/a* YES 2

* Sticky buffer

4.20. Differences From Snort 103

Suricata User Guide, Release 4.0.0-beta1

104 Chapter 4. Suricata Rules

CHAPTER

FIVE

RULE MANAGEMENT

Rule Management with Oinkmaster

It is possible to download and install rules manually, but there is a much easier and quicker way to do so. There
are special programs which you can use for downloading and installing rules. There is for example Pulled Pork and
Oinkmaster. In this documentation the use of Oinkmaster will be described.

To install Oinkmaster, enter:

sudo apt-get install oinkmaster

There are several rulesets. There is for example Emerging Threats (ET) Emerging Threats Pro and VRT. In this
example we are using Emerging Threats.

Oinkmaster has to know where the rules an be found. These rules can be found at:

https://rules.emergingthreats.net/open/suricata-3.2/emerging.rules.tar.gz

open oinkmaster.conf to add this link by entering:

sudo nano /etc/oinkmaster.conf

Place a # in front of the url that is already there and add the new url like this:

105

https://github.com/shirkdog/pulledpork
http://oinkmaster.sourceforge.net/

Suricata User Guide, Release 4.0.0-beta1

(Close oinkmaster.conf by pressing ctrl x, followed by y and enter.)

The next step is to create a directory for the new rules. Enter:

sudo mkdir /etc/suricata/rules

Next enter:

cd /etc
sudo oinkmaster -C /etc/oinkmaster.conf -o /etc/suricata/rules

In the new rules directory a classification.config and a reference.config can be found. The directories of both have to
be added in the suricata.yaml file. Do so by entering:

sudo nano /etc/suricata/suricata.yaml

And add the new file locations instead of the file locations already present, like this:

106 Chapter 5. Rule Management

Suricata User Guide, Release 4.0.0-beta1

To see if everything works as pleased, run Suricata:

suricata -c /etc/suricata/suricata.yaml -i wlan0 (or eth0)

You will notice there are several rule-files Suricata tries to load, but are not available. It is possible to disable those
rule-sets in suricata.yaml by deleting them or by putting a # in front of them. To stop Suricata from running, press ctrl
c.

Emerging Threats contains more rules than loaded in Suricata. To see which rules are available in your rules directory,
enter:

ls /etc/suricata/rules/*.rules

Find those that are not yet present in suricata.yaml and add them in yaml if desired.

You can do so by entering :

sudo nano /etc/suricata/suricata.yaml

If you disable a rule in your rule file by putting a # in front of it, it will be enabled again the next time you run
Oinkmaster. You can disable it through Oinkmaster instead, by entering the following:

cd /etc/suricata/rules

and find the sid of the rule(s) you want to disable.

Subsequently enter:

sudo nano /etc/oinkmaster.conf

and go all the way to the end of the file. Type there:

disablesid 2010495

Instead of 2010495, type the sid of the rule you would like to disable. It is also possible to disable multiple rules, by
entering their sids separated by a comma.

5.1. Rule Management with Oinkmaster 107

Suricata User Guide, Release 4.0.0-beta1

If you run Oinkmaster again, you can see the amount of rules you have disabled. You can also enable rules that are
disabled by default. Do so by entering:

ls /etc/suricata/rules

In this directory you can see several rule-sets Enter for example:

sudo nano /etc/suricata/rules/emerging-malware.rules

In this file you can see which rules are enabled en which are not. You can not enable them for the long-term just by
simply removing the #. Because each time you will run Oinkmaster, the rule will be disabled again. Instead, look up
the sid of the rule you want to enable. Place the sid in the correct place of oinkmaster.config:

sudo nano /etc/oinkmaster.conf

do so by typing:

enablesid: 2010495

Instead of 2010495, type the sid of the rule you would like to to enable. It is also possible to enable multiple rules, by
entering their sids separated by a comma.

In oinkmaster.conf you can modify rules. For example, if you use Suricata as inline/IPS and you want to modify a rule
that sends an alert when it matches and you would like the rule to drop the packet instead, you can do so by entering
the following:

sudo nano oinkmaster.conf

At the part where you can modify rules, type:

modifysid 2010495 “alert” | “drop”

The sid 2010495 is an example. Type the sid of the rule you desire to change, instead.

Rerun Oinkmaster to notice the change.

Updating your rules

If you have already downloaded a ruleset (in the way described in this file), and you would like to update the rules,
enter:

sudo oinkmaster -C /etc/oinkmaster.conf -o /etc/suricata/rules

It is recommended to update your rules frequently. Emerging Threats is modified daily, VRT is updated weekly or
multiple times a week.

Adding Your Own Rules

If you would like to create a rule yourself and use it with Suricata, this guide might be helpful.

Start creating a file for your rule. Type for example the following in your console:

sudo nano local.rules

Write your rule, see Rules Introduction and save it.

Open yaml

108 Chapter 5. Rule Management

Suricata User Guide, Release 4.0.0-beta1

sudo nano /etc/suricata/suricata.yaml

and make sure your local.rules file is added to the list of rules.

Now, run Suricata and see if your rule is being loaded.

suricata -c /etc/suricata/suricata.yaml -i wlan0

If your rule failed to load, check if you have made a mistake anywhere in the rule. Mind the details; look for mistakes
in special characters, spaces, capital characters etc.

Next, check if your log-files are enabled in suricata.yaml.

If you had to correct your rule and/or modify yaml, you have to restart Suricata.

If you see your rule is successfully loaded, you can double check your rule by doing something that should trigger it.

Enter:

tail -f /var/log/suricata/fast.log

If you would make a rule like this:

alert http any any -> any any (msg:"Do not read gossip during work";
content:"Scarlett"; nocase; classtype:policy-violation; sid:1; rev:1;)

Your alert should look like this:

09/15/2011-16:50:27.725288 [**] [1:1:1] Do not read gossip during work [**]
[Classification: Potential Corporate Privacy Violation] [Priority: 1] {TCP} 192.168.0.32:55604 -> 68.67.185.210:80

Rule Reloads

Suricata can be told to reloads it’s rules without restarting.

This works by sending Suricata a signal or by using the unix socket. When Suricata is told to reload the rules these are
the basic steps it takes:

• Load new config

• Load new rules

• Construct new detection engine

• Swap old and new detection engines

• Make sure all threads are updated

• Free old detection engine

Suricata will continue to process packets normally during this process. Keep in mind though, that the system should
have enough memory for both detection engines.

Signal:

kill -USR2 $(pidof suricata)

Unix socket:

suricatasc -c reload-rules

5.3. Rule Reloads 109

Suricata User Guide, Release 4.0.0-beta1

110 Chapter 5. Rule Management

CHAPTER

SIX

MAKING SENSE OUT OF ALERTS

When alert happens it’s important to figure out what it means. Is it serious? Relevant? A false positive?

To find out more about the rule that fired, it’s always a good idea to look at the actual rule.

The first thing to look at in a rule is the description that follows the “msg” keyword. Lets consider an example:

msg:"ET SCAN sipscan probe";

The “ET” indicates the rule came from the Emerging Threats project. “SCAN” indicates the purpose of the rule is to
match on some form of scanning. Following that a more or less detailed description is given.

Most rules contain some pointers to more information in the form of the “reference” keyword.

Consider the following example rule:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS \
(msg:"ET CURRENT_EVENTS Adobe 0day Shovelware"; \
flow:established,to_server; content:"GET "; nocase; depth:4; \
content:!"|0d 0a|Referer\:"; nocase; \
uricontent:"/ppp/listdir.php?dir="; \
pcre:"/\/[a-z]{2}\/[a-z]{4}01\/ppp\/listdir\.php\?dir=/U"; \
classtype:trojan-activity; \
reference:url,isc.sans.org/diary.html?storyid=7747; \
reference:url,doc.emergingthreats.net/2010496; \
reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/CURRENT_EVENTS/CURRENT_Adobe; \
sid:2010496; rev:2;)

In this rule the reference keyword indicates 3 url’s to visit for more information:

isc.sans.org/diary.html?storyid=7747
doc.emergingthreats.net/2010496
www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/CURRENT_EVENTS/CURRENT_Adobe

Some rules contain a reference like: “reference:cve,2009-3958;” should allow you to find info about the specific CVE
using your favourite search engine.

It’s not always straight forward and sometimes not all of that information is available publicly. Usually asking about
it on the signature support lists helps a lot then.

For the Emerging Threats list this is: http://lists.emergingthreats.net/mailman/listinfo/emerging-sigs

For the VRT ruleset: https://lists.sourceforge.net/lists/listinfo/snort-sigs

In many cases, looking at just the alert and the packet that triggered it won’t be enough to be conclusive. When running
an IDS engine like Suricata, it’s always recommended to combine it with full packet capturing. Using tools like Sguil
or Snorby, the full TCP session or UDP flow can be inspected.

111

http://lists.emergingthreats.net/mailman/listinfo/emerging-sigs
https://lists.sourceforge.net/lists/listinfo/snort-sigs

Suricata User Guide, Release 4.0.0-beta1

For example, if a rule fired that indicates your web application is attacked, looking at the full TCP session might reveal
that the web application replied with 404 not found. This will usually mean the attack failed. Usually, not always.

Obviously there is a lot more to Incidence Response, but this should get you started.

112 Chapter 6. Making sense out of Alerts

CHAPTER

SEVEN

PERFORMANCE

Runmodes

Suricata consists of several ‘building blocks’ called threads, thread-modules and queues. A thread is like a process
that runs on a computer. Suricata is multi-threaded, so multiple threads are active at once. A thread-module is a part
of a functionality. One module is for example for decoding a packet, another is the detect-module and another one the
output-module. A packet can be processed by more than one thread. The packet will be passed on to the next thread
through a queue. Packets will be processed by one thread at a time, but there can be multiple packets being processed
at a time by the engine. (see Max-pending-packets) A thread can have one or more thread-modules. If they have more
modules, they can only be active on a a time. The way threads, modules and queues are arranged together is called the
Runmode.

Different runmodes

You can choose a runmode out of several predefined runmodes. The command line option –list-runmodes shows all
available runmodes. All runmodes have a name: auto, single, autofp. The heaviest task is the detection; a packet will
be checked against thousands of signatures.

Example of the default runmode:

In the pfring mode, every flow follows its own fixed route in the runmode.

113

Suricata User Guide, Release 4.0.0-beta1

For more information about the command line options concerning the runmode, see Command Line Options.

Packet Capture

Load balancing

To get the best performance, Suricata will need to run in ‘workers’ mode. This effectively means that there are multiple
threads, each running a full packet pipeline and each receiving packets from the capture method. This means that we
rely on the capture method to distribute the packets over the various threads. One critical aspect of this is that Suricata
needs to get both sides of a flow in the same thread, in the correct order.

The AF_PACKET and PF_RING capture methods both have options to select the ‘cluster-type’. These de-
fault to ‘cluster_flow’ which instructs the capture method to hash by flow (5 tuple). This hash is symmet-
ric. Netmap does not have a cluster_flow mode built-in. It can be added separately by using the “‘lb’
tool”:https://github.com/luigirizzo/netmap/tree/master/apps/lb

> WARNING Recent AF_PACKET changes have “broken”:https://redmine.openinfosecfoundation.org/issues/1777
this symmetry. Work is under way to “address this”:https://redmine.openinfosecfoundation.org/issues/1777#note-7,
but for now stay on kernel <=4.2 or update to 4.4.16+, 4.6.5+ or 4.7+.

On multi-queue NICs, which is almost any modern NIC, RSS settings need to be considered.

RSS

Receive Side Scaling is a technique used by network cards to distribute incoming traffic over various queues on the
NIC. This is meant to improve performance but it is important to realize that it was designed for normal traffic, not for
the IDS packet capture scenario. RSS using a hash algorithm to distribute the incoming traffic over the various queues.
This hash is normally not symmetrical. This means that when receiving both sides of a flow, each side may end up in
a different queue. Sadly, when deploying Suricata, this is the common scenario when using span ports or taps.

114 Chapter 7. Performance

https://github.com/luigirizzo/netmap/tree/master/apps/lb
https://redmine.openinfosecfoundation.org/issues/1777
https://redmine.openinfosecfoundation.org/issues/1777#note-7

Suricata User Guide, Release 4.0.0-beta1

The problem here is that by having both sides of the traffic in different queues, the order of processing of packets
becomes unpredictable. Timing differences on the NIC, the driver, the kernel and in Suricata will lead to a high chance
of packets coming in at a different order than on the wire. This is specifically about a mismatch between the two traffic
directions. For example, Suricata tracks the TCP 3-way handshake. Due to this timing issue, the SYN/ACK may only
be received by Suricata long after the client to server side has already started sending data. Suricata would see this
traffic as invalid.

None of the supported capture methods like AF_PACKET, PF_RING or NETMAP can fix this problem for us. It
would require buffering and packet reordering which is expensive.

To see how many queues are configured:

$ ethtool -l ens2f1
Channel parameters for ens2f1:
Pre-set maximums:
RX: 0
TX: 0
Other: 1
Combined: 64
Current hardware settings:
RX: 0
TX: 0
Other: 1
Combined: 8

Some NIC’s allow you to set it into a symmetric mode. The Intel X(L)710 card can do this in the-
ory, but the drivers aren’t capable of enabling this yet (work is underway to try to address this). Another
way to address is by setting a special “Random Secret Key” that will make the RSS symmetrical. See
http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf (PDF).

In most scenario’s however, the optimal solution is to reduce the number of RSS queues to 1:

Example:

Intel X710 with i40e driver:
ethtool -L $DEV combined 1

Some drivers do not support setting the number of queues through ethtool. In some cases there is a module load time
option. Read the driver docs for the specifics.

Offloading

Network cards, drivers and the kernel itself have various techniques to speed up packet handling. Generally these will
all have to be disabled.

LRO/GRO lead to merging various smaller packets into big ‘super packets’. These will need to be disabled as they
break the dsize keyword as well as TCP state tracking.

Checksum offloading can be left enabled on AF_PACKET and PF_RING, but needs to be disabled on PCAP, NETMAP
and others.

Recommendations

Read your drivers documentation! E.g. for i40e the ethtool change of RSS queues may lead to kernel panics if done
wrong.

Generic: set RSS queues to 1 or make sure RSS hashing is symmetric. Disable NIC offloading.

7.2. Packet Capture 115

http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf

Suricata User Guide, Release 4.0.0-beta1

AF_PACKET: 1 RSS queue and stay on kernel <=4.2 or make sure you have >=4.4.16, >=4.6.5 or >=4.7. Exception:
if RSS is symmetric cluster-type ‘cluster_qm’ can be used to bind Suricata to the RSS queues. Disable NIC offloading
except the rx/tx csum.

PF_RING: 1 RSS queue and use cluster-type ‘cluster_flow’. Disable NIC offloading except the rx/tx csum.

NETMAP: 1 RSS queue. There is no flow based load balancing built-in, but the ‘lb’ tool can be helpful. Another
option is to use the ‘autofp’ runmode. Exception: if RSS is symmetric, load balancing is based on the RSS hash and
multiple RSS queues can be used. Disable all NIC offloading.

Tuning Considerations

Settings to check for optimal performance.

max-pending-packets: <number>

This setting controls the number simultaneous packets that the engine can handle. Setting this higher generally keeps
the threads more busy, but setting it too high will lead to degradation.

Suggested setting: 1000 or higher. Max is ~65000.

mpm-algo: <ac|hs|ac-bs|ac-ks>

Controls the pattern matcher algorithm. AC is the default. On supported platforms, Hyperscan is the best option.

detect.profile: <low|medium|high|custom>

The detection engine tries to split out separate signatures into groups so that a packet is only inspected against signa-
tures that can actually match. As in large rule set this would result in way too many groups and memory usage similar
groups are merged together. The profile setting controls how aggressive this merging is done. Higher is better but
results in (much) higher memory usage.

The “custom” setting allows modification of the group sizes:

custom-values:
toclient-groups: 50
toserver-groups: 50

In general, increasing will improve performance, but will lead to higher memory usage.

detect.sgh-mpm-context: <auto|single|full>

The multi pattern matcher can have it’s context per signature group (full) or globally (single). Auto selects between
single and full based on the mpm-algo selected. ac and ac-bs use “single”. All others “full”. Setting this to “full” with
AC requires a lot of memory: 32GB+ for a reasonable rule set.

116 Chapter 7. Performance

Suricata User Guide, Release 4.0.0-beta1

Hyperscan

Introduction

“Hyperscan is a high-performance multiple regex matching library.” https://01.org/hyperscan

In Suricata it can be used to perform multi pattern matching (mpm). Support was implemented by Justin Viiret and Jim
Xu from Intel: https://github.com/inliniac/suricata/pull/1965, https://redmine.openinfosecfoundation.org/issues/1704

Compilation

It’s possible to pass –with-libhs-includes=/usr/local/include/hs/ –with-libhs-libraries=/usr/local/lib/, although by de-
fault this shouldn’t be necessary. Suricata should pick up Hyperscan’s pkg-config file automagically.

When Suricata’s compilation succeeded, you should have:

suricata --build-info|grep Hyperscan
Hyperscan support: yes

Using Hyperscan

To use the hyperscan support edit your suricata.yaml. Change the mpm-algo and spm-algo values to ‘hs’.

Alternatively, use this commandline option: –set mpm-algo=hs –set spm-algo=hs

Ubuntu Hyperscan Installation

To use Suricata with Hyperscan support, install dependencies:

apt-get install cmake ragel

libboost headers

Hyperscan needs the libboost headers from 1.58+.

On Ubuntu 15.10 or 16.04+, simply do:

apt-get install libboost-dev

Trusty

Trusty has 1.57, so it’s too old. We can grab a newer libboost version, but we don’t install it system wide. It’s only the
headers we care about during compilation of Hyperscan.

sudo apt-get python-dev libbz2-dev
wget http://downloads.sourceforge.net/project/boost/boost/1.60.0/boost_1_60_0.tar.gz
tar xvzf boost_1_60_0.tar.gz
cd boost_1_60_0
./bootstrap.sh --prefix=~/tmp/boost-1.60
./b2 install

7.4. Hyperscan 117

https://01.org/hyperscan
https://github.com/inliniac/suricata/pull/1965
https://redmine.openinfosecfoundation.org/issues/1704

Suricata User Guide, Release 4.0.0-beta1

Hyperscan

We’ll install version 4.2.0.

git clone https://github.com/01org/hyperscan
cd hyperscan
mkdir build
cd build
cmake -DBUILD_STATIC_AND_SHARED=1 ../

If you have your own libboost headers, use this cmake line instead:

cmake -DBUILD_STATIC_AND_SHARED=1 -DBOOST_ROOT=~/tmp/boost-1.60 ../

Finally, make and make install:

make
sudo make install

Compilation can take a long time, but it should in the end look something like this:

Install the project...
-- Install configuration: "RELWITHDEBINFO"
-- Installing: /usr/local/lib/pkgconfig/libhs.pc
-- Up-to-date: /usr/local/include/hs/hs.h
-- Up-to-date: /usr/local/include/hs/hs_common.h
-- Up-to-date: /usr/local/include/hs/hs_compile.h
-- Up-to-date: /usr/local/include/hs/hs_runtime.h
-- Installing: /usr/local/lib/libhs_runtime.a
-- Installing: /usr/local/lib/libhs_runtime.so.4.2.0
-- Installing: /usr/local/lib/libhs_runtime.so.4.2
-- Installing: /usr/local/lib/libhs_runtime.so
-- Installing: /usr/local/lib/libhs.a
-- Installing: /usr/local/lib/libhs.so.4.2.0
-- Installing: /usr/local/lib/libhs.so.4.2
-- Installing: /usr/local/lib/libhs.so

Note that you may have to add /usr/local/lib to your ld search path

echo "/usr/local/lib" | sudo tee --append /etc/ld.so.conf.d/usrlocal.conf
sudo ldconfig

High Performance Configuration

If you have enough RAM, consider the following options in suricata.yaml to off-load as much work from the CPU’s
as possible:

detect:
profile: custom
custom-values:

toclient-groups: 200
toserver-groups: 200

sgh-mpm-context: auto
inspection-recursion-limit: 3000

Be advised, however, that this may require lots of RAM for even modestly sized rule sets. Also be aware that having
additional CPU’s available provides a greater performance boost than having more RAM available. That is, it would
be better to spend money on CPU’s instead of RAM when configuring a system.

118 Chapter 7. Performance

Suricata User Guide, Release 4.0.0-beta1

It may also lead to significantly longer rule loading times.

Statistics

The stats.log produces statistics records on a fixed interval, by default every 8 seconds.

stats.log file

Counter | TM Name | Value

flow_mgr.closed_pruned | FlowManagerThread | 154033
flow_mgr.new_pruned | FlowManagerThread | 67800
flow_mgr.est_pruned | FlowManagerThread | 100921
flow.memuse | FlowManagerThread | 6557568
flow.spare | FlowManagerThread | 10002
flow.emerg_mode_entered | FlowManagerThread | 0
flow.emerg_mode_over | FlowManagerThread | 0
decoder.pkts | RxPcapem21 | 450001754
decoder.bytes | RxPcapem21 | 409520714250
decoder.ipv4 | RxPcapem21 | 449584047
decoder.ipv6 | RxPcapem21 | 9212
decoder.ethernet | RxPcapem21 | 450001754
decoder.raw | RxPcapem21 | 0
decoder.sll | RxPcapem21 | 0
decoder.tcp | RxPcapem21 | 448124337
decoder.udp | RxPcapem21 | 542040
decoder.sctp | RxPcapem21 | 0
decoder.icmpv4 | RxPcapem21 | 82292
decoder.icmpv6 | RxPcapem21 | 9164
decoder.ppp | RxPcapem21 | 0
decoder.pppoe | RxPcapem21 | 0
decoder.gre | RxPcapem21 | 0
decoder.vlan | RxPcapem21 | 0
decoder.avg_pkt_size | RxPcapem21 | 910
decoder.max_pkt_size | RxPcapem21 | 1514
defrag.ipv4.fragments | RxPcapem21 | 4
defrag.ipv4.reassembled | RxPcapem21 | 1
defrag.ipv4.timeouts | RxPcapem21 | 0
defrag.ipv6.fragments | RxPcapem21 | 0
defrag.ipv6.reassembled | RxPcapem21 | 0
defrag.ipv6.timeouts | RxPcapem21 | 0
tcp.sessions | Detect | 41184
tcp.ssn_memcap_drop | Detect | 0
tcp.pseudo | Detect | 2087
tcp.invalid_checksum | Detect | 8358
tcp.no_flow | Detect | 0
tcp.reused_ssn | Detect | 11
tcp.memuse | Detect | 36175872
tcp.syn | Detect | 85902
tcp.synack | Detect | 83385
tcp.rst | Detect | 84326
tcp.segment_memcap_drop | Detect | 0
tcp.stream_depth_reached | Detect | 109
tcp.reassembly_memuse | Detect | 67755264

7.6. Statistics 119

Suricata User Guide, Release 4.0.0-beta1

tcp.reassembly_gap | Detect | 789
detect.alert | Detect | 14721

Detecting packet loss

At shut down, Suricata reports the packet loss statistics it gets from pcap, pfring or afpacket

[18088] 30/5/2012 -- 07:39:18 - (RxPcapem21) Packets 451595939, bytes 410869083410
[18088] 30/5/2012 -- 07:39:18 - (RxPcapem21) Pcap Total:451674222 Recv:451596129 Drop:78093 (0.0%).

Usually, this is not the complete story though. These are kernel drop stats, but the NIC may also have dropped packets.
Use ethtool to get to those:

ethtool -S em2
NIC statistics:

rx_packets: 35430208463
tx_packets: 216072
rx_bytes: 32454370137414
tx_bytes: 53624450
rx_broadcast: 17424355
tx_broadcast: 133508
rx_multicast: 5332175
tx_multicast: 82564
rx_errors: 47
tx_errors: 0
tx_dropped: 0
multicast: 5332175
collisions: 0
rx_length_errors: 0
rx_over_errors: 0
rx_crc_errors: 51
rx_frame_errors: 0
rx_no_buffer_count: 0
rx_missed_errors: 0
tx_aborted_errors: 0
tx_carrier_errors: 0
tx_fifo_errors: 0
tx_heartbeat_errors: 0
tx_window_errors: 0
tx_abort_late_coll: 0
tx_deferred_ok: 0
tx_single_coll_ok: 0
tx_multi_coll_ok: 0
tx_timeout_count: 0
tx_restart_queue: 0
rx_long_length_errors: 0
rx_short_length_errors: 0
rx_align_errors: 0
tx_tcp_seg_good: 0
tx_tcp_seg_failed: 0
rx_flow_control_xon: 0
rx_flow_control_xoff: 0
tx_flow_control_xon: 0
tx_flow_control_xoff: 0
rx_long_byte_count: 32454370137414
rx_csum_offload_good: 35270755306
rx_csum_offload_errors: 65076

120 Chapter 7. Performance

Suricata User Guide, Release 4.0.0-beta1

alloc_rx_buff_failed: 0
tx_smbus: 0
rx_smbus: 0
dropped_smbus: 0

Kernel drops

stats.log contains interesting information in the capture.kernel_packets and capture.kernel_drops. The meaning of
them is different following the capture mode.

In AF_PACKET mode:

• kernel_packets is the number of packets correctly sent to userspace

• kernel_drops is the number of packets that have been discarded instead of being sent to userspace

In PF_RING mode:

• kernel_packets is the total number of packets seen by pf_ring

• kernel_drops is the number of packets that have been discarded instead of being sent to userspace

In the Suricata stats.log the TCP data gap counter is also an indicator, as it accounts missing data packets in TCP
streams:

tcp.reassembly_gap | Detect | 789

Ideally, this number is 0. Not only pkt loss affects it though, also bad checksums and stream engine running out of
memory.

Tools to plot graphs

Some people made nice tools to plot graphs of the statistics file.

• ipython and matplotlib script

• Monitoring with Zabbix or other and Code on Github

Ignoring Traffic

In some cases there are reasons to ignore certain traffic. Certain hosts may be trusted, or perhaps a backup stream
should be ignored.

This document lists some strategies for ignoring traffic.

capture filters (BPF)

Through BPFs the capture methods pcap, af-packet and pf_ring can be told what to send to Suricata, and what not.
For example a simple filter ‘tcp’ will only send tcp packets.

If some hosts and or nets need to be ignored, use something like “not (host IP1 or IP2 or IP3 or net NET/24)”.

Example:

not host 1.2.3.4

7.7. Ignoring Traffic 121

https://github.com/regit/suri-stats
http://christophe.vandeplas.com/2013/11/suricata-monitoring-with-zabbix-or-other.html
https://github.com/cvandeplas/suricata_stats

Suricata User Guide, Release 4.0.0-beta1

Capture filters are specified on the commandline after all other options:

suricata -i eth0 -v not host 1.2.3.4
suricata -i eno1 -c suricata.yaml tcp or udp

Capture filters can be set per interface in the pcap, af-packet, netmap and pf_ring sections. It can also be put in a file:

echo "not host 1.2.3.4" > capture-filter.bpf
suricata -i ens5f0 -F capture-filter.bpf

Using a capture filter limits what traffic Suricata processes. So the traffic not seen by Suricata will not be inspected,
logged or otherwise recorded.

pass rules

Pass rules are Suricata rules that if matching, pass the packet and in case of TCP the rest of the flow. They look like
normal rules, except that instead of ‘alert’ or ‘drop’ they start with ‘pass’.

Example:

pass ip 1.2.3.4 any <> any any (msg:"pass all traffic from/to 1.2.3.4"; sid:1;)

A big difference with capture filters is that logs such as Eve or http.log are still generated for this traffic.

suppress

Suppress rules can be used to make sure no alerts are generated for a host. This is not efficient however, as the
suppression is only considered post-matching. In other words, Suricata first inspects a rule, and only then will it
consider per-host suppressions.

Example:

suppress gen_id 0, sig_id 0, track by_src, ip 1.2.3.4

Packet Profiling

In this guide will be explained how to enable packet profiling and use it with the most recent code of Suricata on
Ubuntu. It is based on the assumption that you have already installed Suricata once from the GIT repository.

Packet profiling is convenient in case you would like to know how long packets take to be processed. It is a way
to figure out why certain packets are being processed quicker than others, and this way a good tool for developing
Suricata.

Update Suricata by following the steps from Installation from Git. Start at the end at

cd suricata/oisf
git pull

And follow the described next steps. To enable packet profiling, make sure you enter the following during the config-
uring stage:

./configure --enable-profiling

Find a folder in which you have pcaps. If you do not have pcaps yet, you can get these with Wireshark. See Sniffing
Packets with Wireshark.

122 Chapter 7. Performance

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Installation_from_Git
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Sniffing_Packets_with_Wireshark
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Sniffing_Packets_with_Wireshark

Suricata User Guide, Release 4.0.0-beta1

Go to the directory of your pcaps. For example:

cd ~/Desktop

With the ls command you can see the content of the folder. Choose a folder and a pcap file

for example:

cd ~/Desktop/2011-05-05

Run Suricata with that pcap:

suricata -c /etc/suricata/suricata.yaml -r log.pcap.(followed by the number/name of your pcap)

for example:

suricata -c /etc/suricata/suricata.yaml -r log.pcap.1304589204

Rule Profiling

--
Date: 9/5/2013 -- 14:59:58
--
Num Rule Gid Rev Ticks % Checks Matches Max Ticks Avg Ticks Avg Match Avg No Match

-------- ------------ -------- -------- ------------ ------ -------- -------- ----------- ----------- ----------- --------------
1 2210021 1 3 12037 4.96 1 1 12037 12037.00 12037.00 0.00
2 2210054 1 1 107479 44.26 12 0 35805 8956.58 0.00 8956.58
3 2210053 1 1 4513 1.86 1 0 4513 4513.00 0.00 4513.00
4 2210023 1 1 3077 1.27 1 0 3077 3077.00 0.00 3077.00
5 2210008 1 1 3028 1.25 1 0 3028 3028.00 0.00 3028.00
6 2210009 1 1 2945 1.21 1 0 2945 2945.00 0.00 2945.00
7 2210055 1 1 2945 1.21 1 0 2945 2945.00 0.00 2945.00
8 2210007 1 1 2871 1.18 1 0 2871 2871.00 0.00 2871.00
9 2210005 1 1 2871 1.18 1 0 2871 2871.00 0.00 2871.00
10 2210024 1 1 2846 1.17 1 0 2846 2846.00 0.00 2846.00

The meaning of the individual fields:

• Ticks – total ticks spent on this rule, so a sum of all inspections

• % – share of this single sig in the total cost of inspection

• Checks – number of times a signature was inspected

• Matches – number of times it matched. This may not have resulted in an alert due to suppression and threshold-
ing.

• Max ticks – single most expensive inspection

• Avg ticks – per inspection average, so “ticks” / “checks”.

• Avg match – avg ticks spent resulting in match

• Avg No Match – avg ticks spent resulting in no match.

The “ticks” are CPU clock ticks: http://en.wikipedia.org/wiki/CPU_time

7.9. Rule Profiling 123

http://en.wikipedia.org/wiki/CPU_time

Suricata User Guide, Release 4.0.0-beta1

Tcmalloc

‘tcmalloc’ is a library Google created as part of the google-perftools suite for improving memory handling in a threaded
program. It’s very simple to use and does work fine with Suricata. It leads to minor speed ups and also reduces memory
usage quite a bit.

Installation

On Ubuntu, install the libtcmalloc-minimal0 package:

apt-get install libtcmalloc-minimal0

On Fedora, install the gperftools-libs package:

yum install gperftools-libs

Usage

Use the tcmalloc by preloading it:

Ubuntu:

LD_PRELOAD=”/usr/lib/libtcmalloc_minimal.so.0" suricata -c suricata.yaml -i eth0

Fedora:

LD_PRELOAD="/usr/lib64/libtcmalloc_minimal.so.4" suricata -c suricata.yaml -i eth0

124 Chapter 7. Performance

CHAPTER

EIGHT

CONFIGURATION

Suricata.yaml

Suricata uses the Yaml format for configuration. The Suricata.yaml file included in the source code, is the example
configuration of Suricata. This document will explain each option.

At the top of the YAML-file you will find % YAML 1.1. Suricata reads the file and identifies the file as YAML.

Max-pending-packets

With the max-pending-packets setting you can set the number of packets you allow Suricata to process simultaneously.
This can range from one packet to tens of thousands/hundreds of thousands of packets. It is a trade of higher perfor-
mance and the use of more memory (RAM), or lower performance and less use of memory. A high number of packets
being processed results in a higher performance and the use of more memory. A low number of packets, results in
lower performance and less use of memory. Choosing a low number of packets being processed while having many
CPU’s/CPU cores, can result in not making use of the whole computer-capacity. (For instance: using one core while
having three waiting for processing packets.)

max-pending-packets: 1024

Runmodes

By default the runmode option is disabled With the runmodes setting you can set the runmode you would like to use.
For all runmodes available, enter –list-runmodes in your command line. For more information, see Runmodes.

runmode: autofp

Default-packet-size

For the max-pending-packets option, Suricata has to keep packets in memory. With the default-packet-size option,
you can set the size of the packets on your network. It is possible that bigger packets have to be processed sometimes.
The engine can still process these bigger packets, but processing it will lower the performance.

default-packet-size: 1514

User and group

It is possible to set the user and group to run Suricata as:

125

Suricata User Guide, Release 4.0.0-beta1

run-as:
user: suri
group: suri

Action-order

All signatures have different properties. One of those is the Action property. This one determines what will happen
when a signature matches. There are four types of Action. A summary of what will happen when a signature matches
and contains one of those Actions:

1. Pass

If a signature matches and contains pass, Suricata stops scanning the packet and skips to the end of all rules (only for
the current packet).

2. Drop

This only concerns the IPS/inline mode. If the program finds a signature that matches, containing drop, it stops
immediately. The packet will not be sent any further. Drawback: The receiver does not receive a message of what is
going on, resulting in a time-out (certainly with TCP). Suricata generates an alert for this packet.

3. Reject

This is an active rejection of the packet. Both receiver and sender receive a reject packet. There are two types of
reject packets that will be automatically selected. If the offending packet concerns TCP, it will be a Reset-packet. For
all other protocols it will be an ICMP-error packet. Suricata also generates an alert. When in Inline/IPS mode, the
offending packet will also be dropped like with the ‘drop’ action.

4. Alert

If a signature matches and contains alert, the packet will be treated like any other non-threatening packet, except for
this one an alert will be generated by Suricata. Only the system administrator can notice this alert.

Inline/IPS can block network traffic in two ways. One way is by drop and the other by reject.

Rules will be loaded in the order of which they appear in files. But they will be processed in a different order.
Signatures have different priorities. The most important signatures will be scanned first. There is a possibility to
change the order of priority. The default order is: pass, drop, reject, alert.

action-order:
- pass
- drop
- reject
- alert

This means a pass rule is considered before a drop rule, a drop rule before a reject rule and so on.

Splitting configuration in multiple files

Some users might have a need or a wish to split their suricata.yaml file in to seperate files, this is available vis the
‘include’ and ‘!include’ keyword. The first example is of taking the contents of the outputs section and storing them
in outputs.yaml

outputs.yaml
- fast

enabled: yes
filename: fast.log
append: yes

126 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

- unified2-alert:
enabled: yes

...

suricata.yaml
...

outputs: !include outputs.yaml

...

The second scenario is where multiple sections are migrated to a different YAML file.

host_1.yaml

max-pending-packets: 2048

outputs:
- fast

enabled: yes
filename: fast.log
append: yes

- unified2-alert:
enabled: yes

suricata.yaml

include: host_1.yaml

...

If the same section, say outputs is later redefined after the include statement it will overwrite the included file. Therefor
any include statement at the end of the document will overwrite the already configured sections.

Event output

Default logging directory

In the /var/log/suricata directory, all of Suricata’s output (alerts and events) will be stored.

default-log-dir: /var/log/suricata

This directory can be overridden by entering the -l command line parameter or by changing the directory directly in
Yaml. To change it with the -l command line parameter, enter the following:

suricata -c suricata.yaml -i eth0 -l /var/log/suricata-logs/

Outputs

There are several types of output. The general structure is:

outputs:
-fast:

enabled: yes

8.1. Suricata.yaml 127

Suricata User Guide, Release 4.0.0-beta1

filename: fast.log
append: yes/no

Enabling all of the logs, will result in a much lower performance and the use of more disc space, so enable only the
outputs you need.

Line based alerts log (fast.log)

This log contains alerts consisting of a single line. Example of the appearance of a single fast.log-file line:

10/05/10-10:08:59.667372 [**] [1:2009187:4] ET WEB_CLIENT ACTIVEX iDefense
COMRaider ActiveX Control Arbitrary File Deletion [**] [Classification: Web
Application Attack] [Priority: 3] {TCP} xx.xx.232.144:80 -> 192.168.1.4:56068

-fast: #The log-name.
enabled:yes #This log is enabled. Set to 'no' to disable.
filename: fast.log #The name of the file in the default logging directory.
append: yes/no #If this option is set to yes, the last filled fast.log-file will not be

#overwritten while restarting Suricata.

Eve (Extensible Event Format)

This is an JSON output for alerts and events. It allows for easy integration with 3rd party tools like logstash.

Extensible Event Format (nicknamed EVE) event log in JSON format
- eve-log:

enabled: yes
filetype: regular #regular|syslog|unix_dgram|unix_stream|redis
filename: eve.json
#prefix: "@cee: " # prefix to prepend to each log entry
the following are valid when type: syslog above
#identity: "suricata"
#facility: local5
#level: Info ## possible levels: Emergency, Alert, Critical,

Error, Warning, Notice, Info, Debug
#redis:
server: 127.0.0.1
port: 6379
async: true ## if redis replies are read asynchronously
mode: list ## possible values: list (default), channel
key: suricata ## key or channel to use (default to suricata)
Redis pipelining set up. This will enable to only do a query every
'batch-size' events. This should lower the latency induced by network
connection at the cost of some memory. There is no flushing implemented
so this setting as to be reserved to high traffic suricata.
pipelining:
enabled: yes ## set enable to yes to enable query pipelining
batch-size: 10 ## number of entry to keep in buffer
types:

- alert:
payload: yes # enable dumping payload in Base64
payload-buffer-size: 4kb # max size of payload buffer to output in eve-log
payload-printable: yes # enable dumping payload in printable (lossy) format
packet: yes # enable dumping of packet (without stream segments)
http: yes # enable dumping of http fields
tls: yes # enable dumping of tls fields

128 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

ssh: yes # enable dumping of ssh fields
smtp: yes # enable dumping of smtp fields

Enable the logging of tagged packets for rules using the
"tag" keyword.
tagged-packets: yes

HTTP X-Forwarded-For support by adding an extra field or overwriting
the source or destination IP address (depending on flow direction)
with the one reported in the X-Forwarded-For HTTP header. This is
helpful when reviewing alerts for traffic that is being reverse
or forward proxied.
xff:

enabled: no
Two operation modes are available, "extra-data" and "overwrite".
mode: extra-data
Two proxy deployments are supported, "reverse" and "forward". In
a "reverse" deployment the IP address used is the last one, in a
"forward" deployment the first IP address is used.
deployment: reverse
Header name where the actual IP address will be reported, if more
than one IP address is present, the last IP address will be the
one taken into consideration.
header: X-Forwarded-For

- http:
extended: yes # enable this for extended logging information
custom allows additional http fields to be included in eve-log
the example below adds three additional fields when uncommented
#custom: [Accept-Encoding, Accept-Language, Authorization]

- dns:
control logging of queries and answers
default yes, no to disable
query: yes # enable logging of DNS queries
answer: yes # enable logging of DNS answers
control which RR types are logged
all enabled if custom not specified
#custom: [a, aaaa, cname, mx, ns, ptr, txt]

- tls:
extended: yes # enable this for extended logging information
output TLS transaction where the session is resumed using a
session id
#session-resumption: no

- files:
force-magic: no # force logging magic on all logged files
force logging of checksums, available hash functions are md5,
sha1 and sha256
#force-hash: [md5]

#- drop:
alerts: yes # log alerts that caused drops
flows: all # start or all: 'start' logs only a single drop
per flow direction. All logs each dropped pkt.
- smtp:

#extended: yes # enable this for extended logging information
this includes: bcc, message-id, subject, x_mailer, user-agent
custom fields logging from the list:
reply-to, bcc, message-id, subject, x-mailer, user-agent, received,
x-originating-ip, in-reply-to, references, importance, priority,
sensitivity, organization, content-md5, date

8.1. Suricata.yaml 129

Suricata User Guide, Release 4.0.0-beta1

#custom: [received, x-mailer, x-originating-ip, relays, reply-to, bcc]
output md5 of fields: body, subject
for the body you need to set app-layer.protocols.smtp.mime.body-md5
to yes
#md5: [body, subject]

- ssh
- stats:

totals: yes # stats for all threads merged together
threads: no # per thread stats
deltas: no # include delta values

bi-directional flows
- flow
uni-directional flows
#- netflow

For more advanced configuration options, see Eve JSON Output.

The format is documented in Eve JSON Format.

Alert output for use with Barnyard2 (unified2.alert)

This log format is a binary format compatible with the unified2 output of another popular IDS format and is designed
for use with Barnyard2 or other tools that consume the unified2 log format.

By default a file with the given filename and a timestamp (unix epoch format) will be created until the file hits the
configured size limit, then a new file, with a new timestamp will be created. It is the job of other tools, such as
Barnyard2 to cleanup old unified2 files.

If the nostamp option is set the log file will not have a timestamp appended. The file will be re-opened on SIGHUP
like other log files allowing external log rotation tools to work as expected. However, if the limit is reach the file will
be deleted and re-opened.

This output supports IPv6 and IPv4 events.

- unified2-alert:
enabled: yes

The filename to log to in the default log directory. A
timestamp in unix epoch time will be appended to the filename
unless nostamp is set to yes.
filename: unified2.alert

File size limit. Can be specified in kb, mb, gb. Just a number
is parsed as bytes.
#limit: 32mb

By default unified2 log files have the file creation time (in
unix epoch format) appended to the filename. Set this to yes to
disable this behaviour.
#nostamp: no

Sensor ID field of unified2 alerts.
#sensor-id: 0

Include payload of packets related to alerts. Defaults to true, set to
false if payload is not required.
#payload: yes

130 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

HTTP X-Forwarded-For support by adding the unified2 extra header or
overwriting the source or destination IP address (depending on flow
direction) with the one reported in the X-Forwarded-For HTTP header.
This is helpful when reviewing alerts for traffic that is being reverse
or forward proxied.
xff:

enabled: no
Two operation modes are available, "extra-data" and "overwrite". Note
that in the "overwrite" mode, if the reported IP address in the HTTP
X-Forwarded-For header is of a different version of the packet
received, it will fall-back to "extra-data" mode.
mode: extra-data
Two proxy deployments are supported, "reverse" and "forward". In
a "reverse" deployment the IP address used is the last one, in a
"forward" deployment the first IP address is used.
deployment: reverse
Header name where the actual IP address will be reported, if more
than one IP address is present, the last IP address will be the
one taken into consideration.
header: X-Forwarded-For

This alert output needs Barnyard2.

A line based log of HTTP requests (http.log)

This log keeps track of all HTTP-traffic events. It contains the HTTP request, hostname, URI and the User-Agent.
This information will be stored in the http.log (default name, in the suricata log directory). This logging can also be
performed through the use of the Eve-log capability.

Example of a HTTP-log line with non-extended logging:

07/01/2014-04:20:14.338309 vg.no [**] / [**] Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.114 Safari/537.36 [**]
192.168.1.6:64685 -> 195.88.54.16:80

Example of a HTTP-log line with extended logging:

07/01/2014-04:21:06.994705 vg.no [**] / [**] Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.114 Safari/537.36 [**] <no referer> [**]
GET [**] HTTP/1.1 [**] 301 => http://www.vg.no/ [**] 239 bytes [**] 192.168.1.6:64726 -> 195.88.54.16:80

- http-log: #The log-name.
enabled: yes #This log is enabled. Set 'no' to disable.
filename: http.log #The name of the file in the default logging directory.
append: yes/no #If this option is set to yes, the last filled http.log-file will not be

overwritten while restarting Suricata.
extended: yes # If set to yes more information is written about the event.

A line based log of DNS queries and replies (dns.log)

This log keeps track of all DNS events (queries and replies). It contains the type of DNS activity that has been
performed, the requested / replied domain name and relevant data suck as client, server, ttl, resource record data. This
logging can also be performed through the use of the Eve-log capability which offers easier parsing.

Example of the apperance of a DNS log of a query with a preceding reply:

8.1. Suricata.yaml 131

Suricata User Guide, Release 4.0.0-beta1

07/01/2014-04:07:08.768100 [**] Query TX 14bf [**] zeustracker.abuse.ch [**] A [**] 192.168.1.6:37681 -> 192.168.1.1:53
07/01/2014-04:07:08.768100 [**] Response TX 14bf [**] zeustracker.abuse.ch [**] A [**] TTL 60 [**] 205.188.95.206 [**] 192.168.1.1:53 -> 192.168.1.6:37681

Non-existant domains and other DNS errors are recorded by the text representation of the rcode field in the reply (see
RFC1035 and RFC2136 for a list). In the example below a non-existent domain is resolved and the NXDOMAIN
error logged:

02/25/2015-22:58:40.499385 [**] Query TX a3ce [**] nosuchdomainwfqwdqwdqw.com [**] A [**] 192.168.40.10:48361 -> 192.168.40.2:53
02/25/2015-22:58:40.499385 [**] Response TX a3ce [**] NXDOMAIN [**] 192.168.40.2:53 -> 192.168.40.10:48361
02/25/2015-22:58:40.499385 [**] Response TX a3ce [**] NXDOMAIN [**] 192.168.40.2:53 -> 192.168.40.10:48361

Configuration options:

- dns-log: # The log-name
enabled: yes # If this log is enabled. Set 'no' to disable
filename: dns.log # Name of this file this log is written to in the default logging directory
append: yes # If this option is set to yes, the (if any exists) dns.log file wil not be overwritten while restarting Suricata.
filetype: regular / unix_stream / unix_dgram

Packet log (pcap-log)

With the pcap-log option you can save all packets, that are registered by Suricata, in a log file named _log.pcap_.
This way, you can take a look at all packets whenever you want. In the normal mode a pcap file is created in the
default-log-dir. It can also be created elsewhere if a absolute path is set in the yaml-file.

The file that is saved in example the default -log-dir /var/log/suricata, can be be opened with every program which
supports the pcap file format. This can be Wireshark, TCPdump, Suricata, Snort and many others.

The pcap-log option can be enabled and disabled.

There is a size limit for the pcap-log file that can be set. The default limit is 32 MB. If the log-file reaches this
limit, the file will be rotated and a new one will be created. The pcap-log option has an extra functionality for
“Sguil”:http://sguil.sourceforge.net/ that can be enabled in the ‘mode’ option. In the sguil mode the “sguil_base_dir”
indicates the base directory. In this base dir the pcaps are created in a Sguil-specific directory structure that is based
on the day:

$sguil_base_dir/YYYY-MM-DD/$filename.<timestamp>

If you would like to use Suricata with Sguil, do not forget to enable (and if necessary modify) the base dir in the
suricata.yaml file. Remember that in the ‘normal’ mode, the file will be saved in default-log-dir or in the absolute path
(if set).

By default all packets are logged except:

• TCP streams beyond stream.reassembly.depth

• encrypted streams after the key exchange

- pcap-log:
enabled: yes
filename: log.pcap

Limit in MB.
limit: 32

mode: sguil # "normal" (default) or sguil.
sguil_base_dir: /nsm_data/

132 Chapter 8. Configuration

http://sguil.sourceforge.net/

Suricata User Guide, Release 4.0.0-beta1

Verbose Alerts Log (alert-debug.log)

This is a log type that gives supplementary information about an alert. It is particularly convenient for people who
investigate false positives and who write signatures. However, it lowers the performance because of the amount of
information it has to store.

- alert-debug: #The log-name.
enabled: no #This log is not enabled. Set 'yes' to enable.
filename: alert-debug.log #The name of the file in the default logging directory.
append: yes/no #If this option is set to yes, the last filled fast.log-file will not be

overwritten while restarting Suricata.

Alert output to prelude (alert-prelude)

To be able to use this type, you have to connect with the prelude manager first.

Prelude alerts contain a lot of information and fields, including the IPfields in of the packet which triggered the alert.
This information can be divided in three parts:

• The alert description (sensor name, date, ID (sid) of the rule, etc). This is always included

• The packets headers (almost all IP fields, TCP UDP etc. if relevant)

• A binary form of the entire packet.

Since the last two parts can be very big (especially since they are stored in the Prelude SQL database), they are
optional and controlled by the two options ‘log_packet_header’ and ‘log_packet_content’. The default setting is to log
the headers, but not the content.

The profile name is the name of the Prelude profile used to connect to the prelude manager. This profile must be
registered using an external command (prelude-admin), and must match the uid/gid of the user that will run Suricata.
The complete procedure is detailed in the Prelude Handbook.

- alert-prelude: #The log-name.
enabled: no #This log is not enabled. Set 'yes' to enable.
profile: suricata #The profile-name used to connect to the prelude manager.
log_packet_content: no #The log_packet_content is disabled by default.
log_packet_header: yes #The log _packet_header is enabled by default.

Stats

In stats you can set the options for stats.log. When enabling stats.log you can set the amount of time in seconds after
which you want the output-data to be written to the log file.

- stats:
enabled: yes #By default, the stats-option is enabled
filename: stats.log #The log-name. Combined with the default logging directory

#(default-log-dir) it will result in /var/log/suricata/stats.log.
#This directory can be overruled with a absolute path. (A
#directory starting with /).

interval: 8 #The default amount of time after which the file will be
#refreshed.

append: yes/no #If this option is set to yes, the last filled fast.log-file will not be
#overwritten while restarting Suricata.

8.1. Suricata.yaml 133

https://dev.prelude-technologies.com/wiki/prelude/InstallingAgentRegistration

Suricata User Guide, Release 4.0.0-beta1

Syslog

With this option it is possible to send all alert and event output to syslog.

- syslog: #This is a output-module to direct log-output to several directions.
enabled: no #The use of this output-module is not enabled.
facility: local5 #In this option you can set a syslog facility.
level: Info #In this option you can set the level of output. The possible levels are:

#Emergency, Alert, Critical, Error, Warning, Notice, Info and Debug.

Drop.log, a line based information for dropped packets

If Suricata works in IPS mode, it can drop packets based on rules. Packets that are being dropped are saved in the
drop.log file, a Netfilter log format.

- drop:
enabled: yes #The option is enabled.
filename: drop.log #The log-name of the file for dropped packets.
append: yes #If this option is set to yes, the last filled drop.log-file will not be

#overwritten while restarting Suricata. If set to 'no' the last filled drop.log file will be overwritten.

Detection engine

Inspection configuration

The detection-engine builds internal groups of signatures. Suricata loads signatures, with which the network traffic
will be compared. The fact is, that many rules certainly will not be necessary. (For instance: if there appears a
packet with the UDP-protocol, all signatures for the TCP-protocol won’t be needed.) For that reason, all signatures
will be divided in groups. However, a distribution containing many groups will make use of a lot of memory. Not
every type of signature gets its own group. There is a possibility that different signatures with several properties in
common, will be placed together in a group. The quantity of groups will determine the balance between memory and
performance. A small amount of groups will lower the performance yet uses little memory. The opposite counts for
a higher amount of groups. The engine allows you to manage the balance between memory and performance. To
manage this, (by determining the amount of groups) there are several general options:high for good performance and
more use of memory, low for low performance and little use of memory. The option medium is the balance between
performance and memory usage. This is the default setting.The option custom is for advanced users. This option has
values which can be managed by the user.

detect:
profile: medium
custom-values:
toclient-groups: 2
toserver-groups: 25

sgh-mpm-context: auto
inspection-recursion-limit: 3000

At all of these options, you can add (or change) a value. Most signatures have the adjustment to focus on one direction,
meaning focusing exclusively on the server, or exclusively on the client.

If you take a look at example 4, the Detection-engine grouping tree, you see it has many branches. At the end of each
branch, there is actually a ‘sig group head’. Within that sig group head there is a container which contains a list with
signatures that are significant for that specific group/that specific end of the branch. Also within the sig group head
the settings for Multi-Pattern-Matcher (MPM) can be found: the MPM-context.

134 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

As will be described again at the part ‘Pattern matching settings’, there are several MPM-algorithms of which can be
chosen from. Because every sig group head has its own MPM-context, some algorithms use a lot of memory. For
that reason there is the option sgh-mpm-context to set whether the groups share one MPM-context, or to set that every
group has its own MPM-context.

For setting the option sgh-mpm-context, you can choose from auto, full or single. The default setting is ‘auto’, meaning
Suricata selects full or single based on the algorithm you use. ‘Full’ means that every group has its own MPM-context,
and ‘single’ that all groups share one MPM-context. The two algorithms ac and ac-gfbs are new in 1.03. These
algorithms use a single MPM-context if the Sgh-MPM-context setting is ‘auto’. The rest of the algorithms use full in
that case.

The inspection-recursion-limit option has to mitigate that possible bugs in Suricata cause big problems. Often Suricata
has to deal with complicated issues. It could end up in an ‘endless loop’ due to a bug, meaning it will repeat its actions
over and over again. With the option inspection-recursion-limit you can limit this action.

Example 4 Detection-engine grouping tree

src Stands for source IP-address.
dst Stands for destination IP-address.
sp Stands for source port.
dp Stands for destination port.

Example 5 Detail grouping tree

8.1. Suricata.yaml 135

Suricata User Guide, Release 4.0.0-beta1

Prefilter Engines

The concept of prefiltering is that there are far too many rules to inspect individually. The approach prefilter takes is
that from each rule one condition is added to prefilter, which is then checked in one step. The most common example
is MPM (also known as fast_pattern). This takes a single pattern per rule and adds it to the MPM. Only for those rules
that have at least one pattern match in the MPM stage, individual inspection is performed.

Next to MPM, other types of keywords support prefiltering. ICMP itype, icode, icmp_seq and icmp_id for example.
TCP window, IP TTL are other examples.

For a full list of keywords that support prefilter, see:

suricata --list-keywords=all

Suricata can automatically select prefilter options, or it can be set manually.

detect:
prefilter:
default: mpm

By default, only MPM/fast_pattern is used.

136 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

The prefilter engines for other non-MPM keywords can then be enabled in specific rules by using the ‘prefilter’
keyword.

E.g.

alert ip any any -> any any (ttl:123; prefilter; sid:1;)

To let Suricata make these decisions set default to ‘auto’:

detect:
prefilter:
default: auto

CUDA (Compute United Device Architecture)

Suricata utilizes CUDA for offloading CPU intensive tasks to the (NVIDIA) GPU (graphics processing unit). Suricata
supports an experimental multi-pattern-matcher using CUDA. Only if you have compiled Suricata with CUDA (by
entering –enable-cuda in the configure stage) you can make use of these features. There are several options for CUDA.
The option ‘packet_buffer_limit’ designates how many packets will be send to the GPU at the same time. Suricata
sends packets in ‘batches’, meaning it sends multiple packets at once. As soon as Suricata has collected the amount of
packets set in the ‘packet_buffer_limit’ option, it sends them to the GPU. The default amount of packets is 2400.

The option ‘packet_size_limit’ makes sure that packets with payloads bigger than a certain amount of bytes will not
be send to the GPU. Other packets will be send to the GPU. The default setting is 1500 bytes.

The option ‘packet_buffers’ designates the amount of buffers that will be filled with packets and will be processed.
Buffers contain the batches of packets. During the time these filled buffers are being processed, new buffers will be
filled.

The option ‘batching_timeout’ can have all values higher than 0. If a buffers is not fully filled after a period of time
(set in this option ‘batching_timeout’), the buffer will be send to the GPU anyway.

The option ‘page_locked’ designates whether the page locked memory will or will not be used. The advantage of page
locked memory is that it can not be swapped out to disk. You would not want your computer to use your hard disk for
Suricata, because it lowers the performance a lot. In this option you can set whether you still want this for CUDA or
not.

The option ‘device_id’ is an option within CUDA to determine which GPU should be turned to account.(If there is
only one GPU present at your computer, there is no benefit making use of the ‘device-id’ option.) To detect the id of
your GPU’s, enter the following in your command line:

suricata --list-cuda-cards

With the option ‘cuda_streams’ you can determine how many cuda-streams should be used for asynchronous process-
ing. All values > 0 are valid. For this option you need a device with Compute Capability > 1.0 and page_locked
enabled to have any effect.

cuda:
-mpm:

packet_buffer_limit: 2400
packet_size_limit: 1500
packet_buffers: 10
batching_timeout: 1
page_locked: enabled
device_id: 0
cuda_streams: 2

8.1. Suricata.yaml 137

Suricata User Guide, Release 4.0.0-beta1

Pattern matcher settings

The multi-pattern-matcher (MPM) is a part of the detection engine within Suricata that searches for multiple patterns
at once. Generally, signatures have one ore more patterns. Of each signature, one pattern is used by the multi-pattern-
matcher. That way Suricata can exclude many signatures from being examined, because a signature can only match
when all its patterns match.

These are the proceedings:

1)A packet comes in.

2)The packed will be analysed by the Multi-pattern-matcher in search of patterns that match.

3)All patterns that match, will be further processed by Suricata (signatures).

Example 8 Multi-pattern-matcher

Suricata offers various implementations of different multi-pattern-matcher algorithm’s. These can be found below.

To set the multi-pattern-matcher algorithm:

mpm-algo: b2gc

After ‘mpm-algo’, you can enter one of the following algorithms: b2g, b2gc, b2gm, b3g, wumanber, ac and ac-gfbs
(These last two are new in 1.0.3). For more information about these last two, please read again the the end of the part
‘Detection engine’. These algorithms have no options, so the fact that below there is no option being mentioned is no
omission.

Subsequently, you can set the options for the mpm-algorithm’s.

The hash_size option determines the size of the hash-table that is internal used by the pattern matcher. A low hash-size
(small table) causes lower memory usage, but decreases the performance. The opposite counts for a high hash-size:
higher memory usage, but (generally) higher performance. The memory settings for hash size of the algorithms can
vary from lowest (2048) - low (4096) - medium (8192) - high (16384) - higher (32768) – max (65536). (Higher is
‘highest’ in YAML 1.0 -1.0.2)

The bf_size option determines the size of the bloom filter, that is used with the final step of the pattern matcher,
namely the validation of the pattern. For this option the same counts as for the hash-size option: setting it to low will
cause lower memory usage, but lowers the performance. The opposite counts for a high setting of the bf_size: higher

138 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

memory usage, but (generally) higher performance. The bloom-filter sizes can vary from low (512) - medium (1024)
- high (2048).

pattern-matcher:
- b2gc:

search_algo: B2gSearchBNDMq
hash_size: low #Determines the size of the hash-table.
bf_size: medium #Determines the size of the bloom- filter.

- b3g:
search_algo: B3gSearchBNDMq
hash_size: low #See hash-size -b2gc.
bf_size: medium #See bf-size -b2gc.

- wumanber:
hash_size: low #See hash-size -b2gc.
bf_size: medium #See bf-size -b2gc.

Threading

Suricata is multi-threaded. Suricata uses multiple CPU’ s/CPU cores so it can process a lot of network packets
simultaneously. (In a single-core engine, the packets will be processed one at a time.)

There are four thread-modules: Packet acquisition, decode and stream application layer, detection, and outputs.

The packet acquisition module reads packets from the network.

The decode module decodes the packets and the stream application application layer has three tasks:

First: it performs stream-tracking, meaning it is making sure all steps will be taken to make a correct network-connection.
Second: TCP-network traffic comes in as packets. The Stream-Assembly engine reconstructs the original stream.
Finally: the application layer will be inspected. HTTP and DCERPC will be analyzed.

The detection threads will compare signatures. There can be several detection threads so they can operate simulta-
neously.

In Outputs all alerts and events will be processed.

Example 6 Threading

Packet acquisition: Reads packets from the network
Decode: Decodes packets.
Stream app. Layer: Performs stream-tracking and reassembly.

8.1. Suricata.yaml 139

Suricata User Guide, Release 4.0.0-beta1

Detect: Compares signatures.
Outputs: Processes all events and alerts.

Most computers have multiple CPU’s/ CPU cores. By default the operating system determines which core works on
which thread. When a core is already occupied, another one will be designated to work on the thread. So, which core
works on which thread, can differ from time to time.

There is an option within threading:

set-cpu-affinity: no

With this option you can cause Suricata setting fixed cores for every thread. In that case 1, 2 and 4 are at core 0 (zero).
Each core has its own detect thread. The detect thread running on core 0 has a lower priority than the other threads
running on core 0. If these other cores are to occupied, the detect thread on core 0 has not much packets to process. De
detect threads running on other cores will process more packets. This is only the case after setting the option at ‘yes’.

Example 7 Balancing workload

You can set the detect-thread-ratio:

detect-thread-ratio: 1.5

The detect thread-ratio will determine the amount of detect threads. By default it will be 1.5 x the amount of
CPU’s/CPU cores present at your computer. This will result in having more detection threads then CPU’s/ CPU
cores. Meaning you are oversubscribing the amount of cores. This may be convenient at times when there have to be
waited for a detection thread. The remaining detection thread can become active.

In the option ‘cpu affinity’ you can set which CPU’s/cores work on which thread. In this option there are several sets
of threads. The management-, receive-, decode-, stream-, detect-, verdict-, reject- and outputs-set. These are fixed
names and can not be changed. For each set there are several options: cpu, mode, and prio. In the option ‘cpu’ you
can set the numbers of the CPU’s/cores which will run the threads from that set. You can set this option to ‘all’, use

140 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

a range (0-3) or a comma separated list (0,1). The option ‘mode’ can be set to ‘balanced’ or ‘exclusive’. When set to
‘balanced’, the individual threads can be processed by all cores set in the option ‘cpu’. If the option ‘mode’ is set to
‘exclusive’, there will be fixed cores for each thread. As mentioned before, threads can have different priority’s. In the
option ‘prio’ you can set a priority for each thread. This priority can be low, medium, high or you can set the priority
to ‘default’. If you do not set a priority for a CPU, than the settings in ‘default’ will count. By default Suricata creates
one ‘detect’ thread per available CPU/CPU core.

cpu-affinity:
- management-cpu-set:

cpu: [0] # include only these cpus in affinity settings
- receive-cpu-set:

cpu: [0] # include only these cpus in affinity settings
- decode-cpu-set:

cpu: [0, 1]
mode: "balanced"

- stream-cpu-set:
cpu: ["0-1"]

- detect-cpu-set:
cpu: ["all"]
mode: "exclusive" # run detect threads in these cpus
Use explicitely 3 threads and don't compute number by using
detect-thread-ratio variable:
threads: 3
prio:

low: [0]
medium: ["1-2"]
high: [3]
default: "medium"

- verdict-cpu-set:
cpu: [0]
prio:

default: "high"
- reject-cpu-set:

cpu: [0]
prio:

default: "low"
- output-cpu-set:

cpu: ["all"]
prio:

default: "medium"

Relevant cpu-affinity settings for IDS/IPS modes

IDS mode

Runmode AutoFp:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
recive-cpu-set - used for receive and decode
detect-cpu-set - used for streamtcp,detect,output(logging),reject

Rumode Workers:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
detect-cpu-set - used for receive,streamtcp,decode,detect,output(logging),respond/reject

8.1. Suricata.yaml 141

Suricata User Guide, Release 4.0.0-beta1

IPS mode

Runmode AutoFp:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
recive-cpu-set - used for receive and decode
detect-cpu-set - used for streamtcp,detect,output(logging)
verdict-cpu-set - used for verdict and respond/reject

Runmode Workers:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
detect-cpu-set - used for receive,streamtcp,decode,detect,output(logging),respond/reject, verdict

IP Defrag

Occasionally network packets appear fragmented. On some networks it occurs more often than on others. Fragmented
packets exist of many parts. Before Suricata is able to inspect these kind of packets accurately, the packets have to
be reconstructed. This will be done by a component of Suricata; the defragment-engine. After a fragmented packet is
reconstructed by the defragment-engine, the engine sends on the reassembled packet to rest of Suricata.

There are three options within defrag: max-frags, prealloc and timeout. At the moment Suricata receives a fragment
of a packet, it keeps in memory that other fragments of that packet will appear soon to complete the packet. However,
there is a possibility that one of the fragments does not appear. To prevent Suricata for keeping waiting for that packet
(thereby using memory) there is a timespan after which Suricata discards the fragments. This occurs by default after
60 seconds.

defrag:
max-frags: 65535
prealloc: yes
timeout: 60

Flow and Stream handling

Flow Settings

Within Suricata, Flows are very important. They play a big part in the way Suricata organizes data internally. A flow
is a bit similar to a connection, except a flow is more general.All packets having the same Tuple (protocol, source IP,
destination IP, source-port, destination-port), belong to the same flow. Packets belonging to a flow are connected to it
internally.

Example 9 Flow

142 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

Example 10 Tuple

Keeping track of all these flows, uses memory. The more flows, the more memory it will cost.

To keep control over memory usage, there are several options:

8.1. Suricata.yaml 143

Suricata User Guide, Release 4.0.0-beta1

The option memcap for setting the maximum amount of bytes the flow-engine will use, hash-size for setting the size
of the hash-table and prealloc for the following:

For packets not yet belonging to a flow, Suricata creates a new flow. This is a relative expensive action.
The risk coming with it, is that attackers /hackers can a attack the engine system at this part. When they
make sure a computer gets a lot of packets with different tuples, the engine has to make a lot of new flows.
This way, an attacker could flood the system. To mitigate the engine from being overloaded, this option
instructs Suricata to keep a number of flows ready in memory. This way Suricata is less vulnerable to
these kind of attacks.

The flow-engine has a management thread that operates independent from the packet processing. This thread is called
the flow-manager. This thread ensures that wherever possible and within the memcap. there will be 10000 flows
prepared.

flow:
memcap: 33554432 #The maximum amount of bytes the flow-engine will make use of.
hash_size: 65536 #Flows will be organized in a hash-table. With this option you can set the

#size of the hash-table.
Prealloc: 10000 #The amount of flows Suricata has to keep ready in memory.

At the point the memcap will still be reached, despite prealloc, the flow-engine goes into the emergency-mode. In this
mode, the engine will make use of shorter time-outs. It lets flows expire in a more aggressive manner so there will be
more space for new Flows.

There are two options: emergency_recovery and prune_flows. The emergency recovery is set on 30. This is the
percentage of prealloc’d flows after which the flow-engine will be back to normal (when 30 percent of the 10000 flows
is completed).

If during the emergency-mode, the aggressive time-outs do not have the desired result, this option is the
final resort. It ends some flows even if they have not reached their time-outs yet. The prune-flows option
shows how many flows there will be terminated at each time a new flow is set up.

emergency_recovery: 30 #Percentage of 1000 prealloc'd flows.
prune_flows: 5 #Amount of flows being terminated during the emergency mode.

Flow Time-Outs

The amount of time Suricata keeps a flow in memory is determined by the Flow time-out.

There are different states in which a flow can be. Suricata distinguishes three flow-states for TCP and two for UDP.
For TCP, these are: New, Established and Closed,for UDP only new and established. For each of these states Suricata
can employ different timeouts.

The state new in a TCP-flow, means the period during the three way handshake. The state established is the state when
the three way handshake is completed. The state closed in the TCP-flow: there a several ways to end a flow. This is
by means of Reset or the Four-way FIN handshake.

New in a UDP-flow: the state in which packets are send from only one direction.

Established in a UDP-flow: packets are send from both directions.

In the example configuration the are settings for each protocol. TCP, UDP, ICMP and default (all other protocols).

flow-timeouts:

default:
new: 30 #Time-out in seconds after the last activity in this flow in a New state.
established: 300 #Time-out in seconds after the last activity in this flow in a Established

#state.
emergency_new: 10 #Time-out in seconds after the last activity in this flow in a New state

144 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

#during the emergency mode.
emergency_established: 100 #Time-out in seconds after the last activity in this flow in a Established

#state in the emergency mode.
tcp:
new: 60
established: 3600
closed: 120
emergency_new: 10
emergency_established: 300
emergency_closed: 20

udp:
new: 30
established: 300
emergency_new: 10
emergency_established: 100

icmp:
new: 30
established: 300
emergency_new: 10
emergency_established: 100

Stream-engine

The Stream-engine keeps track of the TCP-connections. The engine exists of two parts: The stream tracking- and the
reassembly-engine.

The stream-tracking engine monitors the state of a connection. The reassembly-engine reconstructs the flow as it used
to be, so it will be recognised by Suricata.

The stream-engine has two memcaps that can be set. One for the stream-tracking-engine and one for the reassembly-
engine.

The stream-tracking-engine keeps information of the flow in memory. Information about the state, TCP-sequence-
numbers and the TCP window. For keeping this information, it can make use of the capacity the memcap allows.

TCP packets have a so-called checksum. This is an internal code which makes it possible to see if a packet has arrived
in a good state. The stream-engine will not process packets with a wrong checksum. This option can be set off by
entering ‘no’ instead of ‘yes’.

stream:
memcap: 64mb # Max memory usage (in bytes) for TCP session tracking
checksum_validation: yes # Validate packet checksum, reject packets with invalid checksums.

To mitigate Suricata from being overloaded by fast session creation, the option prealloc_sessions instructs Suricata to
keep a number of sessions ready in memory.

A TCP-session starts with the three-way-handshake. After that, data can be send en received. A session can last a long
time. It can happen that Suricata will be started after a few TCP sessions have already been started. This way, Suricata
misses the original setup of those sessions. This setup always includes a lot of information. If you want Suricata to
check the stream from that time on, you can do so by setting the option ‘midstream’ to ‘true’. The default setting is
‘false’. Normally Suricata is able to see all packets of a connection. Some networks make it more complicated though.
Some of the network-traffic follows a different route than the other part, in other words: the traffic goes asynchronous.
To make sure Suricata will check the one part it does see, instead of getting confused, the option ‘async-oneside’ is
brought to life. By default the option is set to ‘false’.

Suricata inspects content in the normal/IDS mode in chunks. In the inline/IPS mode it does that on the sliding window
way (see example ..) In the case Suricata is set in inline mode, it has to inspect packets immediately before sending
it to the receiver. This way Suricata is able to drop a packet directly if needed.(see example . . .) It is important for

8.1. Suricata.yaml 145

Suricata User Guide, Release 4.0.0-beta1

Suricata to note which operating system it is dealing with, because operating systems differ in the way they process
anomalies in streams. See Host-os-policy.

prealloc_sessions: 32768 # 32k sessions prealloc'd
midstream: false # do not allow midstream session pickups
async_oneside: false # do not enable async stream handling
inline: no # stream inline mode
drop-invalid: yes # drop invalid packets

The ‘drop-invalid’ option can be set to no to avoid blocking packets that are seen invalid by the streaming engine. This
can be useful to cover some weird cases seen in some layer 2 IPS setup.

Example 11 Normal/IDS mode

Suricata inspects traffic in chunks.

Example 12 Inline/IPS Sliding Window

Suricata inspects traffic in a sliding window manner.

146 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

Example 13 Normal/IDS (reasembly on ACK’D data)

Example 14 Inline/IPS (reassembly on UNACK’D data)

The reassembly-engine has to keep data segments in memory in order to be able to reconstruct a stream. To avoid
resource starvation a memcap is used to limit the memory used.

Reassembling a stream is an expensive operation. With the option depth you can control how far into a stream
reassembly is done. By default this is 1MB. This setting can be overridden per stream by the protocol parsers that do
file extraction.

8.1. Suricata.yaml 147

Suricata User Guide, Release 4.0.0-beta1

Inspection of reassembled data is done in chunks. The size of these chunks is set with toserver_chunk_size and
toclient_chunk_size. To avoid making the borders predictable, the sizes van be varied by adding in a random
factor.

reassembly:
memcap: 256mb # Memory reserved for stream data reconstruction (in bytes)
depth: 1mb # The depth of the reassembling.
toserver_chunk_size: 2560 # inspect raw stream in chunks of at least this size
toclient_chunk_size: 2560 # inspect raw stream in chunks of at least
randomize-chunk-size: yes
#randomize-chunk-range: 10

‘Raw’ reassembly is done for inspection by simple content, pcre keywords use and other payload inspection not
done on specific protocol buffers like http_uri. This type of reassembly can be turned off:

reassembly:
raw: no

Incoming segments are stored in a list in the stream. To avoid constant memory allocations a per-thread pool is used.

reassembly:
segment-prealloc: 2048 # pre-alloc 2k segments per thread

Resending different data on the same sequence number is a way to confuse network inspection.

reassembly:
check-overlap-different-data: true

Example 15 Stream reassembly

148 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

Application Layer Parsers

Asn1_max_frames (new in 1.0.3 and 1.1)

Asn1 (Abstract Syntax One) is a standard notation to structure and describe data.

Within Asn1_max_frames there are several frames. To protect itself, Suricata will inspect a maximum of 256. You
can set this amount differently if wanted.

Application layer protocols such as X.400 electronic mail, X.500 and LDAP directory services, H.323 (VoIP), BACnet
and SNMP, use ASN.1 to describe the protocol data units (PDUs) they exchange. It is also extensively used in the
Access and Non-Access Strata of UMTS.

Limit for the maximum number of asn1 frames to decode (default 256):

asn1_max_frames: 256

Configure HTTP (libhtp)

The library Libhtp is being used by Suricata to parse HTTP-sessions.

While processing HTTP-traffic, Suricata has to deal with different kind of servers which each process anomalies in
HTTP-traffic differently. The most common web-server is Apache. This is a open source web -server program.

Beside Apache, IIS (Internet Information Services/Server)a web-server program of Microsoft is also well-known.

Like with host-os-policy, it is important for Suricata to which IP-address/network-address is used by which server. In
Libhtp this assigning of web-servers to IP-and network addresses is called personality.

Currently Available Personalities:

8.1. Suricata.yaml 149

http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

Suricata User Guide, Release 4.0.0-beta1

• Minimal

• Generic

• IDS (default)

• IIS_4_0

• IIS_5_0

• IIS_5_1

• IIS_6_0

• IIS_7_0

• IIS_7_5

• Apache

• Apache_2_2

You can assign names to each block of settings. Which in this case is -apache and -iis7. Under these names you can
set IP-addresses, network-addresses the personality and the request-body-limit.

The version-specific personalities know exactly how web servers behave, and emulate that. The IDS personality (will
be GENERIC in the future) would try to implement a best-effort approach that would work reasonably well in the
cases where you do not know the specifics.

The default configuration also applies to every IP-address for which no specific setting is available.

HTTP request body’s are often big, so they take a lot of time to process which has a significant impact on the perfor-
mance. With the option ‘request-body-limit’ you can set the limit (in bytes) of the client-body that will be inspected.
Setting it to 0 will inspect all of the body.

HTTP response body’s are often big, so they take a lot of time to process which has a significant impact on the
performance. With the option ‘response-body-limit’ you can set the limit (in bytes) of the server-body that will be
inspected. Setting it to 0 will inspect all of the body.

libhtp:

default-config:
personality: IDS
request-body-limit: 3072
response-body-limit: 3072

server-config:
- apache:

address: [192.168.1.0/24, 127.0.0.0/8, "::1"]
personality: Apache_2_2
request-body-limit: 0
response-body-limit: 0

- iis7:
address:
- 192.168.0.0/24
- 192.168.10.0/24

personality: IIS_7_0
request-body-limit: 4096
response-body-limit: 8192

As of 1.4, Suricata makes available the whole set of libhtp customisations for its users.

You can now use these parameters in the conf to customise suricata’s use of libhtp.

150 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

Configures whether backslash characters are treated as path segment
separators. They are not on Unix systems, but are on Windows systems.
If this setting is enabled, a path such as "/one\two/three" will be
converted to "/one/two/three". Accepted values - yes, no.
#path-backslash-separators: yes

Configures whether consecutive path segment separators will be
compressed. When enabled, a path such as "/one//two" will be normalized
to "/one/two". The backslash_separators and decode_separators
parameters are used before compression takes place. For example, if
backslash_separators and decode_separators are both enabled, the path
"/one\\/two\/%5cthree/%2f//four" will be converted to
"/one/two/three/four". Accepted values - yes, no.
#path-compress-separators: yes

This parameter is used to predict how a server will react when control
characters are present in a request path, but does not affect path
normalization. Accepted values - none or status_400 */
#path-control-char-handling: none

Controls the UTF-8 treatment of request paths. One option is to only
validate path as UTF-8. In this case, the UTF-8 flags will be raised
as appropriate, and the path will remain in UTF-8 (if it was UTF-8 in
the first place). The other option is to convert a UTF-8 path into a
single byte stream using best-fit mapping. Accepted values - yes, no.
#path-convert-utf8: yes

Configures whether encoded path segment separators will be decoded.
Apache does not do this, but IIS does. If enabled, a path such as
"/one%2ftwo" will be normalized to "/one/two". If the
backslash_separators option is also enabled, encoded backslash
characters will be converted too (and subseqently normalized to
forward slashes). Accepted values - yes, no.
#path-decode-separators: yes

Configures whether %u-encoded sequences in path will be decoded. Such
sequences will be treated as invalid URL encoding if decoding is not
desireable. Accepted values - yes, no.
#path-decode-u-encoding: yes

Configures how server reacts to invalid encoding in path. Accepted
values - preserve_percent, remove_percent, decode_invalid, status_400
#path-invalid-encoding-handling: preserve_percent

Configures how server reacts to invalid UTF-8 characters in path.
This setting will not affect path normalization; it only controls what
response status we expect for a request that contains invalid UTF-8
characters. Accepted values - none, status_400.
#path-invalid-utf8-handling: none

Configures how server reacts to encoded NUL bytes. Some servers will
terminate path at NUL, while some will respond with 400 or 404. When
the termination option is not used, the NUL byte will remain in the
path. Accepted values - none, terminate, status_400, status_404.
path-nul-encoded-handling: none

Configures how server reacts to raw NUL bytes. Some servers will
terminate path at NUL, while some will respond with 400 or 404. When

8.1. Suricata.yaml 151

Suricata User Guide, Release 4.0.0-beta1

the termination option is not used, the NUL byte will remain in the
path. Accepted values - none, terminate, status_400, status_404.
path-nul-raw-handling: none

Sets the replacement characater that will be used to in the lossy
best-fit mapping from Unicode characters into single-byte streams.
The question mark is the default replacement character.
#set-path-replacement-char: ?

Controls what the library does when it encounters an Unicode character
where only a single-byte would do (e.g., the %u-encoded characters).
Conversion always takes place; this parameter is used to correctly
predict the status code used in response. In the future there will
probably be an option to convert such characters to UCS-2 or UTF-8.
Accepted values - bestfit, status_400 and status_404.
#set-path-unicode-mapping: bestfit

Engine output

Logging configuration

The logging subsystem can display all output except alerts and events. It gives information at runtime about what the
engine is doing. This information can be displayed during the engine startup, at runtime and while shutting the engine
down. For informational messages, errors, debugging, etc.

The log-subsystem has several log levels:

Error, warning, informational and debug. Note that debug level logging will only be emitted if Suricata was compiled
with the –enable-debug configure option.

The first option within the logging configuration is the default-log-level. This option determines the sever-
ity/importance level of information that will be displayed. Messages of lower levels than the one set here, will not be
shown. The default setting is Info. This means that error, warning and info will be shown and the other levels won’t
be.

There are more levels: emergency, alert, critical and notice, but those are not used by Suricata yet. This option
can be changed in the configuration, but can also be overridden in the command line by the environment variable:
SC_LOG_LEVEL .

logging:
default-log-level: info

Default log format

A logging line exists of two parts. First it displays meta information (thread id, date etc.), and finally the actual log
message. Example:

[27708] 15/10/2010 -- 11:40:07 - (suricata.c:425) <Info> (main) - This is Suricata version 1.0.2

(Here the part until the – is the meta info, “This is Suricata 1.0.2” is the actual message.)

It is possible to determine which information will be displayed in this line and (the manner how it will be displayed)
in which format it will be displayed. This option is the so called format string:

default-log-format: "[%i] %t - (%f:%l) <%d> (%n) -- "

152 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

The % followed by a character, has a special meaning. There are eight specified signs:

t: Time, timestamp, time and date
example: 15/10/2010 - -11:40:07

p: Process ID. Suricata's whole processing consists of multiple threads.
i: Thread ID. ID of individual threads.
m: Thread module name. (Outputs, Detect etc.)
d: Log-level of specific log-event. (Error, info, debug etc.)
f: Filename. Name of C-file (source code) where log-event is generated.
l: Line-number within the filename, where the log-event is generated in the source-code.
n: Function-name in the C-code (source code).

The last three, f, l and n are mainly convenient for developers.

The log-format can be overridden in the command line by the environment variable: SC_LOG_FORMAT

Output-filter

Within logging you can set an output-filter. With this output-filter you can set which part of the event-logs should be
displayed. You can supply a regular expression (Regex). A line will be shown if the regex matches.

default-output-filter: #In this option the regular expression can be entered.

This value is overridden by the environment var: SC_LOG_OP_FILTER

Outputs

There are different ways of displaying output. The output can appear directly on your screen, it can be placed in a file
or via syslog. The last mentioned is an advanced tool for log-management. The tool can be used to direct log-output
to different locations (files, other computers etc.)

outputs:
- console: #Output on your screen.

enabled: yes #This option is enabled.
- file: #Output stored in a file.

enabled: no #This option is not enabled.
filename: /var/log/suricata.log #Filename and location on disc.

- syslog: #This is a program to direct log-output to several directions.
enabled: no #The use of this program is not enabled.
facility: local5 #In this option you can set a syslog facility.
format: "[%i] <%d> -- " #The option to set your own format.

Packet Acquisition

Pf-ring

The Pf_ring is a library that aims to improve packet capture performance over libcap. It performs packet acquisition.
There are three options within Pf_ring: interface, cluster-id and cluster-type.

pfring:
interface: eth0 # In this option you can set the network-interface

on which you want the packets of the network to be read.

Pf_ring will load balance packets based on flow. All packet acquisition threads that will participate in the load balanc-
ing need to have the same cluster-id. It is important to make sure this ID is unique for this cluster of threads, so that
no other engine / program is making use of clusters with the same id.

8.1. Suricata.yaml 153

Suricata User Guide, Release 4.0.0-beta1

cluster-id: 99

Pf_ring can load balance traffic using pf_ring-clusters. All traffic for pf_ring can be load balanced in one of two ways,
in a round robin manner or a per flow manner that are part of the same cluster. All traffic for pf_ring will be load
balanced across acquisition threads of the same cluster id.

The cluster_round_robin manner is a way of distributing packets one at a time to each thread (like distributing playing
cards to fellow players). The cluster_flow manner is a way of distributing all packets of the same flow to the same
thread. The flows itself will be distributed to the threads in a round-robin manner.

cluster-type: cluster_round_robin

NFQ

Using NFQUEUE in iptables rules, will send packets to Suricata. If the mode is set to ‘accept’, the packet that has
been send to Suricata by a rule using NFQ, will by default not be inspected by the rest of the iptables rules after being
processed by Suricata. There are a few more options to NFQ to change this if desired.

If the mode is set to ‘repeat’, the packets will be marked by Suricata and be re-injected at the first rule of iptables. To
mitigate the packet from being going round in circles, the rule using NFQ will be skipped because of the mark.

If the mode is set to ‘route’, you can make sure the packet will be send to another tool after being processed by Suricata.
It is possible to assign this tool at the mandatory option ‘route_queue’. Every engine/tool is linked to a queue-number.
This number you can add to the NFQ rule and to the route_queue option.

Add the numbers of the options repeat_mark and route_queue to the NFQ-rule:

iptables -I FORWARD -m mark ! --mark $MARK/$MASK -j NFQUEUE

nfq:
mode: accept #By default the packet will be accepted or dropped by Suricata
repeat_mark: 1 #If the mode is set to 'repeat', the packets will be marked after being

#processed by Suricata.
repeat_mask: 1
route_queue: 2 #Here you can assign the queue-number of the tool that Suricata has to

#send the packets to after processing them.

Example 1 NFQ1

mode: accept

154 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

Example 2 NFQ

mode: repeat

Example 3 NFQ

mode: route

8.1. Suricata.yaml 155

Suricata User Guide, Release 4.0.0-beta1

Ipfw

Suricata does not only support Linux, it supports the FreeBSD operating system (this is an open source Unix operating
system) and Mac OS X as well. The in-line mode on FreeBSD uses ipfw (IP-firewall).

Certain rules in ipfw send network-traffic to Suricata. Rules have numbers. In this option you can set the rule to which
the network-traffic will be placed back. Make sure this rule comes after the one that sends the traffic to Suricata,
otherwise it will go around in circles.

The following tells the engine to re-inject packets back into the ipfw firewall at rule number 5500:

ipfw:
ipfw-reinjection-rule-number: 5500

Example 16 Ipfw-reinjection.

156 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

Rules

Rule-files

For different categories of risk there are different rule-files available containing one or more rules. There is a possibility
to instruct Suricata where to find these rules and which rules you want to be load for use. You can set the directory
where the files can be found.

default-rule-path: /etc/suricata/rules/
rule-files:

- backdoor.rules
- bad-traffic.rules
- chat.rules
- ddos.rules
-

The above mentioned is an example of rule-files of which can be chosen from. There are much more rule-files
available.

If wanted, you can set a full path for a specific rule or rule-file. In that case, the above directory (/etc/suricata/rules/)
will be ignored for that specific file. This is convenient in case you write your own rules and want to store them
separate from other rules like that of VRT, ET or ET pro.

If you set a file-name that appears to be not existing, Suricata will ignore that entry and display a error-message during
the engine startup. It will continue with the startup as usual.

8.1. Suricata.yaml 157

Suricata User Guide, Release 4.0.0-beta1

Threshold-file

Within this option, you can state the directory in which the threshold-file will be stored. The default directory is:
/etc/suricata/threshold.config

Classifications

The Classification-file is a file which makes the purpose of rules clear.

Some rules are just for providing information. Some of them are to warn you for serious risks like when you are being
hacked etc.

In this classification-file, there is a part submitted to the rule to make it possible for the system-administrator to
distinguish events.

A rule in this file exists of three parts: the short name, a description and the priority of the rule (in which 1 has the
highest priority and 4 the lowest).

You can notice these descriptions returning in the rule and events / alerts.

Example:

configuration classification: misc-activity,Misc activity,3

Rule:

alert tcp $HOME_NET 21 -> $EXTERNAL_NET any (msg:"ET POLICY FTP Login Successful (non-anonymous)";
flow:from_server,established;flowbits:isset,ET.ftp.user.login; flowbits:isnotset,ftp.user.logged_in;
flowbits:set,ftp.user.logged_in; content:"230 ";pcre:!"/^230(\s+USER)?\s+(anonymous|ftp)/smi";
classtype:misc-activity; reference:urldoc.emergingthreats.net/2003410,;
reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/POLICY/POLICY_FTP_Login; sid:2003410; rev:7;)

Event/Alert:

10/26/10-10:13:42.904785 [**] [1:2003410:7] ET POLICY FTP Login Successful (non-anonymous) [**]
[Classification: Misc activity[Priority: 3] {TCP} 192.168.0.109:21 -> x.x.x.x:34117

You can set the direction of the classification configuration.

classification-file: /etc/suricata/classification.config

Rule-vars

There are variables which can be used in rules.

Within rules, there is a possibility to set for which IP-address the rule should be checked and for which IP-address it
should not.

This way, only relevant rules will be used. To prevent you from having to set this rule by rule, there is an option in
which you can set the relevant IP-address for several rules. This option contains the address group vars that will be
passed in a rule. So, after HOME_NET you can enter your home IP-address.

vars:
address-groups:
HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]" #By using [], it is possible to set

#complicated variables.
EXTERNAL_NET: any
HTTP_SERVERS: "$HOME_NET" #The $-sign tells that what follows is

158 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

#a variable.
SMTP_SERVERS: "$HOME_NET"
SQL_SERVERS: "$HOME_NET"
DNS_SERVERS: "$HOME_NET"
TELNET_SERVERS: "$HOME_NET"
AIM_SERVERS: any

It is a convention to use upper-case characters.

There are two kinds of variables: Address groups and Port-groups. They both have the same function: change the rule
so it will be relevant to your needs.

In a rule there is a part assigned to the address and one to the port. Both have their variable.

All options have to be set. If it is not necessary to set a specific address, you should enter ‘any’.

port-groups:
HTTP_PORTS: "80"
SHELLCODE_PORTS: "!80"
ORACLE_PORTS: 1521
SSH_PORTS: 22

Host-os-policy

Operating systems differ in the way they process fragmented packets and streams. Suricata performs differently with
anomalies for different operating systems. It is important to set of which operating system your IP-address makes use
of, so Suricata knows how to process fragmented packets and streams. For example in stream-reassembly there can be
packets with overlapping payloads.

Example 17 Overlapping payloads

In the configuration-file, the operating-systems are listed. You can add your IP-address behind the name of the operat-
ing system you make use of.

8.1. Suricata.yaml 159

Suricata User Guide, Release 4.0.0-beta1

host-os-policy:
windows: [0.0.0.0/0]
bsd: []
bsd_right: []
old_linux: []
linux: [10.0.0.0/8, 192.168.1.100, "8762:2352:6241:7245:E000:0000:0000:0000"]
old_solaris: []
solaris: ["::1"]
hpux10: []
hpux11: []
irix: []
macos: []
vista: []
windows2k3: []

Engine analysis and profiling

Suricata offers several ways of analyzing performance of rules and the engine itself.

Engine-analysis

The option engine-analysis provides information for signature writers about how Suricata organises signatures inter-
nally.

Like mentioned before, signatures have zero or more patterns on which they can match. Only one of these patterns will
be used by the multi pattern matcher (MPM). Suricata determines which patterns will be used unless the fast-pattern
rule option is used.

The option engine-analysis creates a new log file in the default log dir. In this file all information about signatures and
patterns can be found so signature writers are able to see which pattern is used and change it if desired.

To create this log file, you have to run Suricata with ./src/suricata -c suricata.yaml –engine-analysis.

engine-analysis:
rules-fast-pattern: yes

Example:

[10703] 26/11/2010 -- 11:41:15 - (detect.c:560) <Info> (SigLoadSignatures)
-- Engine-Analyis for fast_pattern printed to file - /var/log/suricata/rules_fast_pattern.txt

== Sid: 1292 ==
Fast pattern matcher: content
Fast pattern set: no
Fast pattern only set: no
Fast pattern chop set: no
Content negated: no
Original content: Volume Serial Number
Final content: Volume Serial Number

alert tcp any any -> any any (content:"abc"; content:"defghi"; sid:1;)

== Sid: 1 ==
Fast pattern matcher: content
Fast pattern set: no

160 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

Fast pattern only set: no
Fast pattern chop set: no
Content negated: no
Original content: defghi
Final content: defghi

alert tcp any any -> any any (content:"abc"; fast_pattern:only; content:"defghi"; sid:1;)

== Sid: 1 ==
Fast pattern matcher: content
Fast pattern set: yes
Fast pattern only set: yes
Fast pattern chop set: no
Content negated: no
Original content: abc
Final content: abc

alert tcp any any -> any any (content:"abc"; fast_pattern; content:"defghi"; sid:1;)

== Sid: 1 ==
Fast pattern matcher: content
Fast pattern set: yes
Fast pattern only set: no
Fast pattern chop set: no
Content negated: no
Original content: abc
Final content: abc

alert tcp any any -> any any (content:"abc"; fast_pattern:1,2; content:"defghi"; sid:1;)

== Sid: 1 ==
Fast pattern matcher: content
Fast pattern set: yes
Fast pattern only set: no
Fast pattern chop set: yes
Fast pattern offset, length: 1, 2
Content negated: no
Original content: abc
Final content: bc

Rule and Packet Profiling settings

Rule profiling is a part of Suricata to determine how expensive rules are. Some rules are very expensive while inspect-
ing traffic. Rule profiling is convenient for people trying to track performance problems and resolving them. Also for
people writing signatures.

Compiling Suricata with rule-profiling will have an impact on performance, even if the option is disabled in the
configuration file.

To observe the rule-performance, there are several options.

8.1. Suricata.yaml 161

Suricata User Guide, Release 4.0.0-beta1

profiling:
rules:
enabled: yes

This engine is not used by default. It can only be used if Suricata is compiled with:

-- enable-profiling

At the end of each session, Suricata will display the profiling statistics. The list will be displayed sorted.

This order can be changed as pleased. The choice is between ticks, avgticks, checks, maxticks and matches. The
setting of your choice will be displayed from high to low.

The amount of time it takes to check the signatures, will be administrated by Suricata. This will be counted in ticks.
One tick is one CPU computation. 3 GHz will be 3 billion ticks.

Beside the amount of checks, ticks and matches it will also display the average and the maximum of a rule per session
at the end of the line.

The option Limit determines the amount of signatures of which the statistics will be shown, based on the sorting.

sort: avgticks
limit: 100

Example of how the rule statistics can look like;

Rule Ticks % Checks Matches Max Tick Avg
Ticks

7560 107766621 0.02 138 37 105155334 780917.54
11963 1605394413 0.29 2623 1 144418923 612045.14
7040 1431034011 0.26 2500 0 106018209 572413.60
5726 1437574662 0.26 2623 1 115632900 548065.06
7037 1355312799 0.24 2562 0 116048286 529005.78
11964 1276449255 0.23 2623 1 96412347 486637.15
7042 1272562974 0.23 2623 1 96405993 485155.54
5719 1233969192 0.22 2562 0 106439661 481642.93
5720 1204053246 0.21 2562 0 125155431 469966.14

Packet Profiling

packets:

Profiling can be disabled here, but it will still have a
performance impact if compiled in.

enabled: yes #this option is enabled by default
filename: packet_stats.log #name of the file in which packet profiling information will be

#stored.
append: yes #If set to yes, new packet profiling information will be added to the

#information that was saved last in the file.

per packet csv output
csv:

Output can be disabled here, but it will still have a
performance impact if compiled in.

162 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

enabled: no #the sending of packet output to a csv-file is by default disabled.
filename: packet_stats.csv #name of the file in which csv packet profiling information will be

#stored

Packet profiling is enabled by default in suricata.yaml but it will only do its job if you compiled Suricata with –enable
profiling.

The filename in which packet profiling information will be stored, is packet-stats.log. Information in this file can
be added to the last information that was saved there, or if the append option is set to no, the existing file will be
overwritten.

Per packet, you can send the output to a csv-file. This file contains one line for each packet with all profiling informa-
tion of that packet. This option can be used only if Suricata is build with –enable-profiling and if the packet profiling
option is enabled in yaml.

It is best to use runmode ‘single’ if you would like to profile the speed of the code. When using a single thread, there is
no situation in which two threads have to wait for each other . When using two threads, the time threads might have to
wait for each other will be taken in account when/during profiling packets. For more information see Packet Profiling.

Application layers

SSL/TLS

SSL/TLS parsers track encrypted SSLv2, SSLv3, TLSv1, TLSv1.1 and TLSv1.2 sessions.

Protocol detection is done using patterns and a probing parser running on only TCP/443 by default. The pattern based
protocol detection is port independent.

tls:
enabled: yes
detection-ports:
dp: 443

Completely stop processing TLS/SSL session after the handshake
completed. If bypass is enabled this will also trigger flow
bypass. If disabled (the default), TLS/SSL session is still
tracked for Heartbleed and other anomalies.
#no-reassemble: yes

Encrypted traffic

There is no decryption of encrypted traffic, so once the handshake is complete continued tracking of the session is of
limited use. The no-reassemble option controls the behaviour after the handshake.

If no-reassemble is set to true, all processing of this session is stopped. No further parsing and inspection
happens. If bypass is enabled this will lead to the flow being bypassed, either inside Suricata or by the capture
method if it supports it.

If no-reassemble is set to false, which is the default, Suricata will continue to track the SSL/TLS session.
Inspection will be limited, as content inspection will still be disabled. There is no point in doing pattern matching
on traffic known to be encrypted. Inspection for (encrypted) Heartbleed and other protocol anomalies still happens.

8.1. Suricata.yaml 163

Suricata User Guide, Release 4.0.0-beta1

Modbus

According to MODBUS Messaging on TCP/IP Implementation Guide V1.0b, it is recommended to keep the TCP
connection opened with a remote device and not to open and close it for each MODBUS/TCP transaction. In that case,
it is important to set the stream-depth of the modbus as unlimited.

modbus:
Stream reassembly size for modbus, default is 0
stream-depth: 0

Advanced Options

luajit

states

Luajit has a strange memory requirement, it’s ‘states’ need to be in the first 2G of the process’ memory. For this
reason when luajit is used the states are allocated at the process startup. This option controls how many states are
preallocated.

If the pool is depleted a warning is generated. Suricata will still try to continue, but may fail if other parts of the engine
take too much memory. If the pool was depleted a hint will be printed at the engines exit.

States are allocated as follows: for each detect script a state is used per detect thread. For each output script, a single
state is used. Keep in mind that a rule reload temporary doubles the states requirement.

Global-Thresholds

Thresholds can be configured in the rules themselves, see Rule Thresholding. They are often set by rule writers based
on their intel for creating a rule combined with a judgement on how often a rule will alert.

Threshold Config

Next to rule thresholding more thresholding can be configured on the sensor using the threshold.config.

threshold/event_filter

Syntax:

threshold gen_id <gid>, sig_id <sid>, type <threshold|limit|both>, \
track <by_src|by_dst>, count <N>, seconds <T>

rate_filter

Rate filters allow changing of a rule action when a rule matches.

Syntax:

rate_filter: rate_filter gen_id <gid>, sig_id <sid>, track <tracker>, \
count <c>, seconds <s>, new_action <action>, timeout <timeout>

164 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

Example:

rate_filter gen_id 1, sig_id 1000, track by_rule, count 100, seconds 60, \
new_action alert, timeout 30

gen_id

Generator id. Normally 1, but if a rule uses the gid keyword to set another value it has to be matched in the gen_id.

sig_id

Rule/signature id as set by the rule sid keyword.

track

Where to track the rule matches. When using by_src/by_dst the tracking is done per IP-address. The Host table is
used for storage. When using by_rule it’s done globally for the rule.

count

Number of rule hits before the rate_filter is activated.

seconds

Time period within which the count needs to be reached to activate the rate_filter

new_action

New action that is applied to matching traffic when the rate_filter is in place.

Values:

<alert|drop|pass|reject>

Note: ‘sdrop’ and ‘log’ are supported by the parser but not implemented otherwise.

timeout

Time in seconds during which the rate_filter will remain active.

Example

Lets say we want to limit incoming connections to our SSH server. The rule 888 below simply alerts on SYN packets
to the SSH port of our SSH server. If an IP-address triggers this more than 10 or more with a minute, the drop
rate_filter is set with a timeout of 5 minutes.

Rule:

8.2. Global-Thresholds 165

Suricata User Guide, Release 4.0.0-beta1

alert tcp any any -> $MY_SSH_SERVER 22 (msg:"Connection to SSH server"; \
flow:to_server; flags:S,12; sid:888;)

Rate filter:

rate_filter gen_id 1, sig_id 888, track by_src, count 10, seconds 60, \
new_action drop, timeout 300

suppress

Suppressions can be used to suppress alerts for a rule or a host/network. Actions performed when a rule matches, such
as setting a flowbit, are still performed.

Syntax:

suppress gen_id <gid>, sig_id <sid>
suppress gen_id <gid>, sig_id <sid>, track <by_src|by_dst>, ip <ip|subnet>

Examples:

suppress gen_id 1, sig_id 2002087, track by_src, ip 209.132.180.67

This will make sure the signature 2002087 will never match for src host 209.132.180.67.

Other possibilities/examples:

suppress gen_id 1, sig_id 2003614, track by_src, ip 217.110.97.128/25
suppress gen_id 1, sig_id 2003614, track by_src, ip [192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]
suppress gen_id 1, sig_id 2003614, track by_src, ip $HOME_NET

Global thresholds vs rule thresholds

Note: this section applies to 1.4+ In 1.3 and before mixing rule and global thresholds is not supported.

When a rule has a threshold/detection_filter set a rule can still be affected by the global threshold file.

The rule below will only fire if 10 or more emails are being delivered/sent from a host within 60 seconds.

alert tcp any any -> any 25 (msg:"ET POLICY Inbound Frequent Emails - Possible Spambot Inbound"; \
flow:established; content:"mail from|3a|"; nocase; \
threshold: type threshold, track by_src, count 10, seconds 60; \
reference:url,doc.emergingthreats.net/2002087; classtype:misc-activity; sid:2002087; rev:10;)

Next, we’ll see how global settings affect this rule.

Suppress

Suppressions can be combined with rules with thresholds/detection_filters with no exceptions.

suppress gen_id 1, sig_id 2002087, track by_src, ip 209.132.180.67
suppress gen_id 0, sig_id 0, track by_src, ip 209.132.180.67
suppress gen_id 1, sig_id 0, track by_src, ip 209.132.180.67

Each of the rules above will make sure 2002087 doesn’t alert when the source of the emails is 209.132.180.67. It will
alert for all other hosts.

166 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

suppress gen_id 1, sig_id 2002087

This suppression will simply convert the rule to “noalert”, meaning it will never alert in any case. If the rule sets a
flowbit, that will still happen.

Threshold/event_filter

When applied to a specific signature, thresholds and event_filters (threshold from now on) will override the signature
setting. This can be useful for when the default in a signature doesn’t suit your evironment.

threshold gen_id 1, sig_id 2002087, type both, track by_src, count 3, seconds 5
threshold gen_id 1, sig_id 2002087, type threshold, track by_src, count 10, seconds 60
threshold gen_id 1, sig_id 2002087, type limit, track by_src, count 1, seconds 15

Each of these will replace the threshold setting for 2002087 by the new threshold setting.

Note: overriding all gids or sids (by using gen_id 0 or sig_id 0) is not supported. Bug #425.

Rate_filter

TODO

Snort.conf to Suricata.yaml

This guide is meant for those who are familiar with Snort and the snort.conf configuration format. This guide will
provide a 1:1 mapping between Snort and Suricata configuration wherever possible.

Variables

snort.conf

ipvar HOME_NET any
ipvar EXTERNAL_NET any
...

portvar HTTP_PORTS [80,81,311,591,593,901,1220,1414,1741,1830,2301,2381,2809,3128,3702,4343,4848,5250,7001,7145,7510,7777,7779,8000,8008,8014,8028,8080,8088,8090,8118,8123,8180,8181,8243,8280,8800,8888,8899,9000,9080,9090,9091,9443,9999,11371,55555]
portvar SHELLCODE_PORTS !80
...

suricata.yaml

vars:
address-groups:

HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"
EXTERNAL_NET: "!$HOME_NET"

port-groups:
HTTP_PORTS: "80"
SHELLCODE_PORTS: "!80"

Note that Suricata can automatically detect HTTP traffic regardless of the port it uses. So the HTTP_PORTS variable
is not nearly as important as it is with Snort, if you use a Suricata enabled ruleset.

8.3. Snort.conf to Suricata.yaml 167

Suricata User Guide, Release 4.0.0-beta1

Decoder alerts

snort.conf

Stop generic decode events:
config disable_decode_alerts

Stop Alerts on experimental TCP options
config disable_tcpopt_experimental_alerts

Stop Alerts on obsolete TCP options
config disable_tcpopt_obsolete_alerts

Stop Alerts on T/TCP alerts
config disable_tcpopt_ttcp_alerts

Stop Alerts on all other TCPOption type events:
config disable_tcpopt_alerts

Stop Alerts on invalid ip options
config disable_ipopt_alerts

suricata.yaml

Suricata has no specific decoder options. All decoder related alerts are controlled by rules. See #Rules below.

Checksum handling

snort.conf

config checksum_mode: all

suricata.yaml

Suricata’s checksum handling works on-demand. The stream engine checks TCP and IP checksum by default:

stream:
checksum-validation: yes # reject wrong csums

Alerting on bad checksums can be done with normal rules. See #Rules, decoder-events.rules specifically.

Various configs

Active response

snort.conf

Configure active response for non inline operation. For more information, see REAMDE.active
config response: eth0 attempts 2

suricata.yaml

Active responses are handled automatically w/o config if rules with the “reject” action are used.

Dropping privileges

snort.conf

168 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

Configure specific UID and GID to run snort as after dropping privs. For more information see snort -h command line options
#
config set_gid:
config set_uid:

Suricata

To set the user and group use the –user <username> and –group <groupname> commandline options.

Snaplen

snort.conf

Configure default snaplen. Snort defaults to MTU of in use interface. For more information see README
#
config snaplen:
#

Suricata always works at full snap length to provide full traffic visibility.

Bpf

snort.conf

Configure default bpf_file to use for filtering what traffic reaches snort. For more information see snort -h command line options (-F)
#
config bpf_file:
#

suricata.yaml

BPF filters can be set per packet acquisition method, with the “bpf-filter: <file>” yaml option and in a file using the -F
command line option.

For example:

pcap:
- interface: eth0
#buffer-size: 16777216
#bpf-filter: "tcp and port 25"
#checksum-checks: auto
#threads: 16
#promisc: no
#snaplen: 1518

Log directory

snort.conf

Configure default log directory for snort to log to. For more information see snort -h command line options (-l)
#
config logdir:

suricata.yaml

default-log-dir: /var/log/suricata/

This value is overridden by the -l commandline option.

8.3. Snort.conf to Suricata.yaml 169

Suricata User Guide, Release 4.0.0-beta1

Packet acquisition

snort.conf

Configure DAQ related options for inline operation. For more information, see README.daq
#
config daq: <type>
config daq_dir: <dir>
config daq_mode: <mode>
config daq_var: <var>
#
<type> ::= pcap | afpacket | dump | nfq | ipq | ipfw
<mode> ::= read-file | passive | inline
<var> ::= arbitrary <name>=<value passed to DAQ
<dir> ::= path as to where to look for DAQ module so's

suricata.yaml

Suricata has all packet acquisition support built-in. It’s configuration format is very verbose.

pcap:
- interface: eth0
#buffer-size: 16777216
#bpf-filter: "tcp and port 25"
#checksum-checks: auto
#threads: 16
#promisc: no
#snaplen: 1518

pfring:
afpacket:
nfq:
ipfw:

Passive vs inline vs reading files is determined by how Suricata is invoked on the command line.

Rules

snort.conf:

In snort.conf a RULE_PATH variable is set, as well as variables for shared object (SO) rules and preprocessor rules.

var RULE_PATH ../rules
var SO_RULE_PATH ../so_rules
var PREPROC_RULE_PATH ../preproc_rules

include $RULE_PATH/local.rules
include $RULE_PATH/emerging-activex.rules
...

suricata.yaml:

In the suricata.yaml the default rule path is set followed by a list of rule files. Suricata does not have a concept of
shared object rules or preprocessor rules. Instead of preprocessor rules, Suricata has several rule files for events set by
the decoders, stream engine, http parser etc.

default-rule-path: /etc/suricata/rules
rule-files:
- local.rules
- emerging-activex.rules

170 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

The equivalent of preprocessor rules are loaded like normal rule files:

rule-files:
- decoder-events.rules
- stream-events.rules
- http-events.rules
- smtp-events.rules

Log Rotation

Suricata can generate lot of output, so it’s important to manage the files to avoid issues with disks filling up.

A HUP signal sent to Suricata will force it to reopen the logfiles.

Example logrotate file:

/var/log/suricata/*.log /var/log/suricata/*.json
{

rotate 3
missingok
nocompress
create
sharedscripts
postrotate

/bin/kill -HUP $(cat /var/run/suricata.pid)
endscript

}

Multi Tenancy

Introduction

Multi tenancy support allows for different rule sets with different rule vars.

YAML

In the main (“master”) YAML, the suricata.yaml, a new section called “multi-detect” should be added.

Settings:

• enabled: yes/no -> is multi-tenancy support enable

• default: yes/no -> is the normal detect config a default ‘fall back’ tenant?

• selector: direct (for unix socket pcap processing, see below) or vlan

• loaders: number of ‘loader’ threads, for parallel tenant loading at startup

• tenants: list of tenants

– id: tenant id

– yaml: separate yaml file with the tenant specific settings

• mappings:

– vlan id

8.4. Log Rotation 171

Suricata User Guide, Release 4.0.0-beta1

– tenant id: tenant to associate with the vlan id

multi-detect:
enabled: yes
#selector: direct # direct or vlan
selector: vlan
loaders: 3

tenants:
- id: 1
yaml: tenant-1.yaml

- id: 2
yaml: tenant-2.yaml

- id: 3
yaml: tenant-3.yaml

mappings:
- vlan-id: 1000
tenant-id: 1

- vlan-id: 2000
tenant-id: 2

- vlan-id: 1112
tenant-id: 3

The tenant-1.yaml, tenant-2.yaml, tenant-3.yaml each contain a partial configuration:

Set the default rule path here to search for the files.
if not set, it will look at the current working dir
default-rule-path: /etc/suricata/rules
rule-files:

- rules1

You can specify a threshold config file by setting "threshold-file"
to the path of the threshold config file:
threshold-file: /etc/suricata/threshold.config

classification-file: /etc/suricata/classification.config
reference-config-file: /etc/suricata/reference.config

Holds variables that would be used by the engine.
vars:

Holds the address group vars that would be passed in a Signature.
These would be retrieved during the Signature address parsing stage.
address-groups:

HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"

EXTERNAL_NET: "!$HOME_NET"

...

port-groups:

HTTP_PORTS: "80"

SHELLCODE_PORTS: "!80"

...

172 Chapter 8. Configuration

Suricata User Guide, Release 4.0.0-beta1

Unix Socket

Registration

register-tenant <id> <yaml>

Examples:

register-tenant 1 tenant-1.yaml
register-tenant 2 tenant-2.yaml
register-tenant 3 tenant-3.yaml
register-tenant 5 tenant-5.yaml
register-tenant 7 tenant-7.yaml

unregister-tenant <id>

unregister-tenant 2
unregister-tenant 1

Unix socket runmode (pcap processing)

The Unix Socket “pcap-file” command can be used to select the tenant to inspect the pcap against:

pcap-file traffic1.pcap /logs1/ 1
pcap-file traffic2.pcap /logs2/ 2
pcap-file traffic3.pcap /logs3/ 3
pcap-file traffic4.pcap /logs5/ 5
pcap-file traffic5.pcap /logs7/ 7

This runs the traffic1.pcap against tenant 1 and it logs into /logs1/, traffic2.pcap against tenant 2 and logs to /logs2/
and so on.

Live traffic mode

For live traffic currently only a vlan based multi-tenancy is supported.

The master yaml needs to have the selector set to “vlan”.

Registration

Tenants can be mapped to vlan id’s.

register-tenant-handler <tenant id> vlan <vlan id>

register-tenant-handler 1 vlan 1000

unregister-tenant-handler <tenant id> vlan <vlan id>

unregister-tenant-handler 4 vlan 1111
unregister-tenant-handler 1 vlan 1000

The registration of tenant and tenant handlers can be done on a running engine.

8.5. Multi Tenancy 173

Suricata User Guide, Release 4.0.0-beta1

Dropping Privileges After Startup

Currently, libcap-ng is needed for dropping privileges on Suricata after startup. For libcap, see status of feature request
number #276 – Libcap support for dropping privileges.

Most distributions have libcap-ng in their repositories.

To download the current version of libcap-ng from upstream, see also http://people.redhat.com/sgrubb/libcap-
ng/ChangeLog

wget http://people.redhat.com/sgrubb/libcap-ng/libcap-ng-0.7.8.tar.gz
tar -xzvf libcap-ng-0.7.8.tar.gz
cd libcap-ng-0.7.8
./configure
make
make install

Download, configure, compile and install Suricata for your particular setup. See Installation. Depending on your
environment, you may need to add the –with-libpcap_ng-libraries and –with-libpcap_ng-includes options during the
configure step. e.g:

./configure --with-libcap_ng-libraries=/usr/local/lib \
--with-libcap_ng-includes=/usr/local/include

Now, when you run Suricata, tell it what user and/or group you want it to run as after startup with the –user and –group
options. e.g. (this assumes a ‘suri’ user and group):

suricata -D -i eth0 --user=suri --group=suri

You will also want to make sure your user/group permissions are set so suricata can still write to its log files which are
usually located in /var/log/suricata.

mkdir -p /var/log/suricata
chown -R root:suri /var/log/suricata
chmod -R 775 /var/log/suricata

174 Chapter 8. Configuration

http://people.redhat.com/sgrubb/libcap-ng/ChangeLog
http://people.redhat.com/sgrubb/libcap-ng/ChangeLog

CHAPTER

NINE

REPUTATION

IP Reputation

IP Reputation Config

IP reputation has a few configuration directives, all disabled by default.

IP Reputation
#reputation-categories-file: /etc/suricata/iprep/categories.txt
#default-reputation-path: /etc/suricata/iprep
#reputation-files:
- reputation.list

reputation-categories-file

The categories file mapping numbered category values to short names.

reputation-categories-file: /etc/suricata/iprep/categories.txt

default-reputation-path

Path where reputation files from the “reputation-files” directive are loaded from by default.

default-reputation-path: /etc/suricata/iprep

reputation-files

YAML list of file names to load. In case of a absolute path the file is loaded directly, otherwise the path from “default-
reputation-path” is pre-pended to form the final path.

reputation-files:
- badhosts.list
- knowngood.list
- sharedhosting.list

Hosts

IP reputation information is stored in the host table, so the settings of the host table affect it.

175

Suricata User Guide, Release 4.0.0-beta1

Depending on the number of hosts reputation information is available for, the memcap and hash size may have to be
increased.

Reloads

If the “rule-reloads” option is enabled, sending Suricata a USR2 signal will reload the IP reputation data, along with
the normal rules reload.

During the reload the host table will be updated to contain the new data. The iprep information is versioned. When
the reload is complete, Suricata will automatically clean up the old iprep information.

Only the reputation files will be reloaded, the categories file won’t be. If categories change, Suricata should be
restarted.

File format

The format of the reputation files is described in the IP Reputation Format page.

IP Reputation Rules

IP Reputation can be used in rules through a new rule directive “iprep”.

iprep

The iprep directive matches on the IP reputation information for a host.

iprep:<side to check>,<category>,<operator>,<reputation score>

side to check: <any|src|dst|both>

category: the category short name

operator: <, >, =

reputation score: 1-127

Example:

alert ip $HOME_NET any -> any any (msg:"IPREP internal host talking to CnC server"; flow:to_server; iprep:dst,CnC,>,30; sid:1; rev:1;)

This rule will alert when a system in $HOME_NET acts as a client while communicating with any IP in the CnC
category that has a reputation score set to greater than 30.

IP-only

The “iprep” keyword is compatible to “IP-only” rules. This means that a rule like:

alert ip any any -> any any (msg:"IPREP High Value CnC"; iprep:src,CnC,>,100; sid:1; rev:1;)

will only be checked once per flow-direction.

For more information about IP Reputation see IP Reputation Config and IP Reputation Format.

176 Chapter 9. Reputation

Suricata User Guide, Release 4.0.0-beta1

IP Reputation Format

Description of IP Reputation file formats. For the configuration see IP Reputation Config and IP Reputation Rules for
the rule format.

Categories file

The categories file provides a mapping between a category number, short name, and long description. It’s a simple
CSV file:

<id>,<short name>,<description>

Example:

1,BadHosts,Known bad hosts
2,Google,Known google host

The maximum value for the category id is hard coded at 60 currently.

Reputation file

The reputation file lists a reputation score for hosts in the categories. It’s a simple CSV file:

<ip>,<category>,<reputation score>

The IP is an IPv4 address in the quad-dotted notation. The category is the number as defined in the categories file. The
reputation score is the confidence that this IP is in the specified category, represented by a number between 1 and 127
(0 means no data).

Example:

1.2.3.4,1,101
1.1.1.1,6,88

If an IP address has a score in multiple categories it should be listed in the file multiple times.

Example:

1.1.1.1,1,10
1.1.1.1,2,10

This lists 1.1.1.1 in categories 1 and 2, each with a score of 10.

The purpose of the IP reputation component is the ranking of IP Addresses within the Suricata Engine. It will collect,
store, update and distribute reputation intelligence on IP Addresses. The hub and spoke architecture will allows the
central database (The Hub) to collect, store and compile updated IP reputation details that are then distributed to
user-side sensor databases (Spokes) for inclusion in user security systems. The reputation data update frequency and
security action taken, is defined in the user security configuration.

The intent of IP Reputation is to allow sharing of intelligence regarding a vast number of IP addresses. This can be
positive or negative intelligence classified into a number of categories. The technical implementation requires three
major efforts; engine integration, the hub that redistributes reputation, and the communication protocol between hubs
and sensors. The hub will have a number of responsibilities. This will be a separate module running on a separate
system as any sensor. Most often it would run on a central database that all sensors already have communication with.
It will be able to subscribe to one or more external feeds. The local admin should be able to define the feeds to be
subscribed to, provide authentication credentials if required, and give a weight to that feed. The weight can be an
overall number or a by category weight. This will allow the admin to minimize the influence a feed has on their overall
reputation if they distrust a particular category or feed, or trust another implicitly. Feeds can be configured to accept

9.1. IP Reputation 177

Suricata User Guide, Release 4.0.0-beta1

feedback or not and will report so on connect. The admin can override and choose not to give any feedback, but the
sensor should report these to the Hub upstream on connect. The hub will take all of these feeds and aggregate them
into an average single score for each IP or IP Block, and then redistribute this data to all local sensors as configured.
It should receive connections from sensors. The sensor will have to provide authentication and will provide feedback.
The hub should redistribute that feedback from sensors to all other sensors as well as up to any feeds that accept
feedback. The hub should also have an API to allow outside statistical analysis to be done to the database and fed back
in to the stream. For instance a local site may choose to change the reputation on all Russian IP blocks, etc.

For more information about IP Reputation see IP Reputation Config, IP Reputation Rules and IP Reputation Format.

178 Chapter 9. Reputation

CHAPTER

TEN

INIT SCRIPTS

For Ubuntu with Upstart, the following can be used in /etc/init/suricata.conf:

suricata
description "Intruder Detection System Daemon"
start on runlevel [2345]
stop on runlevel [!2345]
expect fork
exec suricata -D --pidfile /var/run/suricata.pid -c /etc/suricata/suricata.yaml -i eth1

179

Suricata User Guide, Release 4.0.0-beta1

180 Chapter 10. Init Scripts

CHAPTER

ELEVEN

SETTING UP IPS/INLINE FOR LINUX

In this guide will be explained how to work with Suricata in layer3 inline mode and how to set iptables for that purpose.

First start with compiling Suricata with NFQ support. For instructions see Ubuntu Installation. For more information
about NFQ and iptables, see NFQ.

To check if you have NFQ enabled in your Suricata, enter the following command:

suricata --build-info

and examine if you have NFQ between the features.

To run suricata with the NFQ mode, you have to make use of the -q option. This option tells Suricata which of the
queue numbers it should use.

sudo suricata -c /etc/suricata/suricata.yaml -q 0

Iptables configuration

First of all it is important to know which traffic you would like to send to Suricata. Traffic that passes your computer
or traffic that is generated by your computer.

181

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Ubuntu_Installation

Suricata User Guide, Release 4.0.0-beta1

If Suricata is running on a gateway and is meant to protect the computers behind that gateway you are dealing with the
first scenario: forward_ing . If Suricata has to protect the computer it is running on, you are dealing with the second
scenario: host (see drawing 2). These two ways of using Suricata can also be combined.

The easiest rule in case of the gateway-scenario to send traffic to Suricata is:

sudo iptables -I FORWARD -j NFQUEUE

In this case, all forwarded traffic goes to Suricata.

In case of the host situation, these are the two most simple iptable rules;

sudo iptables -I INPUT -j NFQUEUE
sudo iptables -I OUTPUT -j NFQUEUE

It is possible to set a queue number. If you do not, the queue number will be 0 by default.

Imagine you want Suricata to check for example just TCP-traffic, or all incoming traffic on port 80, or all traffic on
destination-port 80, you can do so like this:

sudo iptables -I INPUT -p tcp -j NFQUEUE
sudo iptables -I OUTPUT -p tcp -j NFQUEUE

In this case, Suricata checks just TCP traffic.

sudo iptables -I INPUT -p tcp --sport 80 -j NFQUEUE
sudo iptables -I OUTPUT -p tcp --dport 80 -j NFQUEUE

In this example, Suricata checks all input and output on port 80.

182 Chapter 11. Setting up IPS/inline for Linux

Suricata User Guide, Release 4.0.0-beta1

To see if you have set your iptables rules correct make sure Suricata is running and enter:

sudo iptables -vnL

In the example you can see if packets are being logged.

This description of the use of iptables is the way to use it with IPv4. To use it with IPv6 all previous mentioned
commands have to start with ‘ip6tables’. It is also possible to let Suricata check both kinds of traffic.

There is also a way to use iptables with multiple networks (and interface cards). Example:

sudo iptables -I FORWARD -i eth0 -o eth1 -j NFQUEUE
sudo iptables -I FORWARD -i eth1 -o eth0 -j NFQUEUE

The options -i (input) -o (output) can be combined with all previous mentioned options

If you would stop Suricata and use internet, the traffic will not come through. To make internet work correctly, you
have to erase all iptable rules.

To erase all iptable rules, enter:

sudo iptables -F

11.1. Iptables configuration 183

Suricata User Guide, Release 4.0.0-beta1

184 Chapter 11. Setting up IPS/inline for Linux

CHAPTER

TWELVE

OUTPUT

EVE

Eve JSON Output

Suricata can output alerts, http events, dns events, tls events and file info through json.

The most common way to use this is through ‘EVE’, which is a firehose approach where all these logs go into a single
file.

Extensible Event Format (nicknamed EVE) event log in JSON format
- eve-log:

enabled: yes
filetype: regular #regular|syslog|unix_dgram|unix_stream|redis
filename: eve.json
#prefix: "@cee: " # prefix to prepend to each log entry
the following are valid when type: syslog above
#identity: "suricata"
#facility: local5
#level: Info ## possible levels: Emergency, Alert, Critical,

Error, Warning, Notice, Info, Debug
#redis:
server: 127.0.0.1
port: 6379
async: true ## if redis replies are read asynchronously
mode: list ## possible values: list (default), channel
key: suricata ## key or channel to use (default to suricata)
Redis pipelining set up. This will enable to only do a query every
'batch-size' events. This should lower the latency induced by network
connection at the cost of some memory. There is no flushing implemented
so this setting as to be reserved to high traffic suricata.
pipelining:
enabled: yes ## set enable to yes to enable query pipelining
batch-size: 10 ## number of entry to keep in buffer
types:

- alert:
payload: yes # enable dumping payload in Base64
payload-buffer-size: 4kb # max size of payload buffer to output in eve-log
payload-printable: yes # enable dumping payload in printable (lossy) format
packet: yes # enable dumping of packet (without stream segments)
http: yes # enable dumping of http fields
tls: yes # enable dumping of tls fields
ssh: yes # enable dumping of ssh fields
smtp: yes # enable dumping of smtp fields

185

Suricata User Guide, Release 4.0.0-beta1

Enable the logging of tagged packets for rules using the
"tag" keyword.
tagged-packets: yes

HTTP X-Forwarded-For support by adding an extra field or overwriting
the source or destination IP address (depending on flow direction)
with the one reported in the X-Forwarded-For HTTP header. This is
helpful when reviewing alerts for traffic that is being reverse
or forward proxied.
xff:

enabled: no
Two operation modes are available, "extra-data" and "overwrite".
mode: extra-data
Two proxy deployments are supported, "reverse" and "forward". In
a "reverse" deployment the IP address used is the last one, in a
"forward" deployment the first IP address is used.
deployment: reverse
Header name where the actual IP address will be reported, if more
than one IP address is present, the last IP address will be the
one taken into consideration.
header: X-Forwarded-For

- http:
extended: yes # enable this for extended logging information
custom allows additional http fields to be included in eve-log
the example below adds three additional fields when uncommented
#custom: [Accept-Encoding, Accept-Language, Authorization]

- dns:
control logging of queries and answers
default yes, no to disable
query: yes # enable logging of DNS queries
answer: yes # enable logging of DNS answers
control which RR types are logged
all enabled if custom not specified
#custom: [a, aaaa, cname, mx, ns, ptr, txt]

- tls:
extended: yes # enable this for extended logging information
custom allows to control which tls fields that are included
in eve-log
#custom: [subject, issuer, fingerprint, sni, version, not_before, not_after, certificate, chain]

- files:
force-magic: no # force logging magic on all logged files
force logging of checksums, available hash functions are md5,
sha1 and sha256
#force-hash: [md5]

#- drop:
alerts: yes # log alerts that caused drops
flows: all # start or all: 'start' logs only a single drop
per flow direction. All logs each dropped pkt.
- smtp:

#extended: yes # enable this for extended logging information
this includes: bcc, message-id, subject, x_mailer, user-agent
custom fields logging from the list:
reply-to, bcc, message-id, subject, x-mailer, user-agent, received,
x-originating-ip, in-reply-to, references, importance, priority,
sensitivity, organization, content-md5, date
#custom: [received, x-mailer, x-originating-ip, relays, reply-to, bcc]
output md5 of fields: body, subject

186 Chapter 12. Output

Suricata User Guide, Release 4.0.0-beta1

for the body you need to set app-layer.protocols.smtp.mime.body-md5
to yes
#md5: [body, subject]

- ssh
- stats:

totals: yes # stats for all threads merged together
threads: no # per thread stats
deltas: no # include delta values

bi-directional flows
- flow
uni-directional flows
#- netflow

Each alert, http log, etc will go into this one file: ‘eve.json’. This file can then be processed by 3rd party tools like
Logstash or jq.

Output types

EVE can output to multiple methods. regular is a normal file. Other options are syslog, unix_dgram,
unix_stream and redis.

Output types:

filetype: regular #regular|syslog|unix_dgram|unix_stream|redis
filename: eve.json
#prefix: "@cee: " # prefix to prepend to each log entry
the following are valid when type: syslog above
#identity: "suricata"
#facility: local5
#level: Info ## possible levels: Emergency, Alert, Critical,

Error, Warning, Notice, Info, Debug
#redis:
server: 127.0.0.1
port: 6379
async: true ## if redis replies are read asynchronously
mode: list ## possible values: list (default), channel
key: suricata ## key or channel to use (default to suricata)
Redis pipelining set up. This will enable to only do a query every
'batch-size' events. This should lower the latency induced by network
connection at the cost of some memory. There is no flushing implemented
so this setting as to be reserved to high traffic suricata.
pipelining:
enabled: yes ## set enable to yes to enable query pipelining
batch-size: 10 ## number of entry to keep in buffer

Alerts

Alerts are event records for rule matches. They can be ammended with metadata, such as the HTTP record an alert
was generated for.

Metadata:

- alert:
payload: yes # enable dumping payload in Base64
payload-buffer-size: 4kb # max size of payload buffer to output in eve-log
payload-printable: yes # enable dumping payload in printable (lossy) format

12.1. EVE 187

Suricata User Guide, Release 4.0.0-beta1

packet: yes # enable dumping of packet (without stream segments)
http: yes # enable dumping of http fields
tls: yes # enable dumping of tls fields
ssh: yes # enable dumping of ssh fields
smtp: yes # enable dumping of smtp fields

DNS

DNS records are logged one log record per query/answer record.

YAML:

- dns:
control logging of queries and answers
default yes, no to disable
query: yes # enable logging of DNS queries
answer: yes # enable logging of DNS answers
control which RR types are logged
all enabled if custom not specified
#custom: [a, aaaa, cname, mx, ns, ptr, txt]

To reduce verbosity the output can be filtered by supplying the record types to be logged under custom.

TLS

TLS records are logged one record per session.

YAML:

- tls:
extended: yes # enable this for extended logging information
custom allows to control which tls fields that are included
in eve-log
#custom: [subject, issuer, serial, fingerprint, sni, version, not_before, not_after, certificate, chain]

The default is to log certificate subject and issuer. If extended is enabled, then the log gets more verbose.

By using custom it is possible to select which TLS fields to log.

Date modifiers in filename

It is possible to use date modifiers in the eve-log filename.

outputs:
- eve-log:

filename: eve-%s.json

The example above adds epoch time to the filename. All the date modifiers from the C library should be supported.
See the man page for strftime for all supported modifiers.

Rotate log file

Eve-log can be configured to rotate based on time.

188 Chapter 12. Output

Suricata User Guide, Release 4.0.0-beta1

outputs:
- eve-log:

filename: eve-%Y-%m-%d-%H:%M.json
rotate-interval: minute

The example above creates a new log file each minute, where the filename contains a timestamp. Other supported
rotate-interval values are hour and day.

In addition to this, it is also possible to specify the rotate-interval as a relative value. One example is to rotate
the log file each X seconds.

outputs:
- eve-log:

filename: eve-%Y-%m-%d-%H:%M:%S.json
rotate-interval: 30s

The example above rotates eve-log each 30 seconds. This could be replaced with 30m to rotate every 30 minutes, 30h
to rotate every 30 hours, 30d to rotate every 30 days, or 30w to rotate every 30 weeks.

Multiple Logger Instances

It is possible to have multiple ‘EVE’ instances, for example the following is valid:

outputs:
- eve-log:

enabled: yes
type: file
filename: eve-ips.json
types:

- alert
- drop

- eve-log:
enabled: yes
type: file
filename: eve-nsm.json
types:

- http
- dns
- tls

So here the alerts and drops go into ‘eve-ips.json’, while http, dns and tls go into ‘eve-nsm.json’.

In addition to this, each log can be handled completely separately:

outputs:
- alert-json-log:

enabled: yes
filename: alert-json.log

- dns-json-log:
enabled: yes
filename: dns-json.log

- drop-json-log:
enabled: yes
filename: drop-json.log

- http-json-log:
enabled: yes
filename: http-json.log

- ssh-json-log:

12.1. EVE 189

Suricata User Guide, Release 4.0.0-beta1

enabled: yes
filename: ssh-json.log

- tls-json-log:
enabled: yes
filename: tls-json.log

For most output types, you can add multiple:

outputs:
- alert-json-log:

enabled: yes
filename: alert-json1.log

- alert-json-log:
enabled: yes
filename: alert-json2.log

Except for drop for which only a single logger instance is supported.

File permissions

Log file permissions can be set individually for each logger. filemode can be used to control the permissions of a
log file, e.g.:

outputs:
- eve-log:

enabled: yes
filename: eve.json
filemode: 600

The example above sets the file permissions on eve.json to 600, which means that it is only readable and writable
by the owner of the file.

JSON flags

Several flags can be specified to control the JSON output in EVE:

outputs:
- eve-log:

json:
Sort object keys in the same order as they were inserted
preserve-order: yes

Make the output more compact
compact: yes

Escape all unicode characters outside the ASCII range
ensure-ascii: yes

Escape the '/' characters in string with '\/'
escape-slash: yes

All these flags are enabled by default, and can be modified per EVE instance.

Eve JSON Format

Example:

190 Chapter 12. Output

Suricata User Guide, Release 4.0.0-beta1

{
"timestamp": "2009-11-24T21:27:09.534255",
"event_type": "alert",
"src_ip": "192.168.2.7",
"src_port": 1041,
"dest_ip": "x.x.250.50",
"dest_port": 80,
"proto": "TCP",
"alert": {

"action": "allowed",
"gid": 1,
"signature_id" :2001999,
"rev": 9,
"signature": "ET MALWARE BTGrab.com Spyware Downloading Ads",
"category": "A Network Trojan was detected",
"severity": 1

}
}

Common Section

All the JSON log types share a common structure:

{"timestamp":"2009-11-24T21:27:09.534255","event_type":"TYPE", ...tuple... ,"TYPE":{ ... type specific content ... }}

Event types

The common part has a field “event_type” to indicate the log type.

"event_type":"TYPE"

Event type: Alert

Field action

Possible values: “allowed” and “blocked”

Example:

"action":"allowed"

Action is set to “allowed” unless a rule used the “drop” action and Suricata is in IPS mode, or when the rule used the
“reject” action.

Event type: HTTP

Fields

• “hostname”: The hostname this HTTP event is attributed to

• “url”: URL at the hostname that was accessed

• “http_user_agent”: The user-agent of the software that was used

12.1. EVE 191

Suricata User Guide, Release 4.0.0-beta1

• “http_content_type”: The type of data returned (ex: application/x-gzip)

• “cookie”

In addition to these fields, if the extended logging is enabled in the suricata.yaml file the following fields are (can) also
included:

• “length”: The content size of the HTTP body

• “status”: HTTP statuscode

• “protocol”: Protocol / Version of HTTP (ex: HTTP/1.1)

• “http_method”: The HTTP method (ex: GET, POST, HEAD)

• “http_refer”: The referer for this action

In addition to the extended logging fields one can also choose to enable/add from 47 additional custom logging HTTP
fields enabled in the suricata.yaml file. The additional fields can be enabled as following:

- eve-log:
enabled: yes
type: file #file|syslog|unix_dgram|unix_stream
filename: eve.json
the following are valid when type: syslog above
#identity: "suricata"
#facility: local5
#level: Info ## possible levels: Emergency, Alert, Critical,

Error, Warning, Notice, Info, Debug
types:

- alert
- http:

extended: yes # enable this for extended logging information
custom allows additional http fields to be included in eve-log
the example below adds three additional fields when uncommented
#custom: [Accept-Encoding, Accept-Language, Authorization]
custom: [accept, accept-charset, accept-encoding, accept-language,
accept-datetime, authorization, cache-control, cookie, from,
max-forwards, origin, pragma, proxy-authorization, range, te, via,
x-requested-with, dnt, x-forwarded-proto, accept-range, age,
allow, connection, content-encoding, content-language,
content-length, content-location, content-md5, content-range,
content-type, date, etags, last-modified, link, location,
proxy-authenticate, referrer, refresh, retry-after, server,
set-cookie, trailer, transfer-encoding, upgrade, vary, warning,
www-authenticate, x-flash-version, x-authenticated-user]

The benefits here of using the extended logging is to see if this action for example was a POST or perhaps if a download
of an executable actually returned any bytes.

Examples

Event with non-extended logging:

"http": {
"hostname": "www.digip.org",
"url" :"\/jansson\/releases\/jansson-2.6.tar.gz",
"http_user_agent": "<User-Agent>",
"http_content_type": "application\/x-gzip"

}

192 Chapter 12. Output

Suricata User Guide, Release 4.0.0-beta1

Event with extended logging:

"http": {
"hostname": "direkte.vg.no",
"url":".....",
"http_user_agent": "<User-Agent>",
"http_content_type": "application\/json",
"http_refer": "http:\/\/www.vg.no\/",
"http_method": "GET",
"protocol": "HTTP\/1.1",
"status":"200",
"length":310

}

Event type: DNS

Fields

Outline of fields seen in the different kinds of DNS events:

• “type”: Indicating DNS message type, can be “answer” or “query”.

• “id”: <needs explanation>

• “rrname”: Resource Record Name (ex: a domain name)

• “rrtype”: Resource Record Type (ex: A, AAAA, NS, PTR)

• “rdata”: Resource Data (ex. IP that domain name resolves to)

• “ttl”: Time-To-Live for this resource record

Examples

Example of a DNS query for the IPv4 address of “twitter.com” (resource record type ‘A’):

"dns": {
"type": "query",
"id": 16000,
"rrname": "twitter.com",
"rrtype":"A"

}

Example of a DNS answer with an IPv4 (resource record type ‘A’) return:

"dns": {
"type": "answer",
"id":16000,
"rrname": "twitter.com",
"rrtype":"A",
"ttl":8,
"rdata": "199.16.156.6"

}

Event type: TLS

12.1. EVE 193

Suricata User Guide, Release 4.0.0-beta1

Fields

• “subject”: The subject field from the TLS certificate

• “issuer”: The issuer field from the TLS certificate

• “session_resumed”: This field has the value of “true” if the TLS session was resumed via a session id. If this
field appears, “subject” and “issuer” do not appear, since a TLS certificate is not seen.

If extended logging is enabled the following fields are also included:

• “serial”: The serial number of the TLS certificate

• “fingerprint”: The (SHA1) fingerprint of the TLS certificate

• “sni”: The Server Name Indication (SNI) extension sent by the client

• “version”: The SSL/TLS version used

• “notbefore”: The NotBefore field from the TLS certificate

• “notafter”: The NotAfter field from the TLS certificate

In addition to this, custom logging also allows the following fields:

• “certificate”: The TLS certificate base64 encoded

• “chain”: The entire TLS certificate chain base64 encoded

Examples

Example of regular TLS logging:

"tls": {
"subject": "C=US, ST=California, L=Mountain View, O=Google Inc, CN=*.google.com",
"issuerdn": "C=US, O=Google Inc, CN=Google Internet Authority G2"

}

Example of regular TLS logging for resumed sessions:

"tls": {
"session_resumed": true

}

Example of extended TLS logging:

"tls": {
"subject": "C=US, ST=California, L=Mountain View, O=Google Inc, CN=*.google.com",
"issuerdn": "C=US, O=Google Inc, CN=Google Internet Authority G2",
"serial": "0C:00:99:B7:D7:54:C9:F6:77:26:31:7E:BA:EA:7C:1C",
"fingerprint": "8f:51:12:06:a0:cc:4e:cd:e8:a3:8b:38:f8:87:59:e5:af:95:ca:cd",
"sni": "calendar.google.com",
"version": "TLS 1.2",
"notbefore": "2017-01-04T10:48:43",
"notafter": "2017-03-29T10:18:00"

}

Example of certificate logging using TLS custom logging (subject, sni, certificate):

"tls": {
"subject": "C=US, ST=California, L=Mountain View, O=Google Inc, CN=*.googleapis.com
"sni": "www.googleapis.com",

194 Chapter 12. Output

Suricata User Guide, Release 4.0.0-beta1

"certificate": "MIIE3TCCA8WgAwIBAgIIQPsvobRZN0gwDQYJKoZIhvcNAQELBQAwSTELMA [...]"
}

Eve JSON ‘jq’ Examples

The jq tool is very useful for quickly parsing and filtering JSON files. This page is contains various examples of how
it can be used with Suricata’s Eve.json.

The basics are discussed here:

• https://www.stamus-networks.com/2015/05/18/looking-at-suricata-json-events-on-command-line/

Colorize output

tail -f eve.json | jq -c '.'

DNS NXDOMAIN

tail -f eve.json|jq -c 'select(.dns.rcode=="NXDOMAIN")'

Unique HTTP User Agents

cat eve.json | jq -s '[.[]|.http.http_user_agent]|group_by(.)|map({key:.[0],value:(.|length)})|from_entries'

Source: https://twitter.com/mattarnao/status/601807374647750657

Data use for a host

tail -n500000 eve.json | jq -s 'map(select(.event_type=="netflow" and .dest_ip=="192.168.1.3").netflow.bytes)|add'|numfmt --to=iec
1.3G

Note: can use a lot of memory. Source: https://twitter.com/pkt_inspector/status/605524218722148352

Monitor part of the stats

$ tail -f eve.json | jq -c 'select(.event_type=="stats")|.stats.decoder'

Inspect Alert Data

cat eve.json | jq -r -c 'select(.event_type=="alert")|.payload'|base64 --decode

Top 10 Destination Ports

cat eve.json | jq -c 'select(.event_type=="flow")|[.proto, .dest_port]'|sort |uniq -c|sort -nr|head -n10

12.1. EVE 195

https://www.stamus-networks.com/2015/05/18/looking-at-suricata-json-events-on-command-line/
https://twitter.com/mattarnao/status/601807374647750657
https://twitter.com/pkt_inspector/status/605524218722148352

Suricata User Guide, Release 4.0.0-beta1

Lua Output

Lua scripts can be used to generate output from Suricata.

Script structure

A script defines 4 functions: init, setup, log, deinit

• init – registers where the script hooks into the output engine

• setup – does per output thread setup

• log – logging function

• deinit – clean up function

Example:

function init (args)
local needs = {}
needs["protocol"] = "http"
return needs

end

function setup (args)
filename = SCLogPath() .. "/" .. name
file = assert(io.open(filename, "a"))
SCLogInfo("HTTP Log Filename " .. filename)
http = 0

end

function log(args)
http_uri = HttpGetRequestUriRaw()
if http_uri == nil then

http_uri = "<unknown>"
end
http_uri = string.gsub(http_uri, "%c", ".")

http_host = HttpGetRequestHost()
if http_host == nil then

http_host = "<hostname unknown>"
end
http_host = string.gsub(http_host, "%c", ".")

http_ua = HttpGetRequestHeader("User-Agent")
if http_ua == nil then

http_ua = "<useragent unknown>"
end
http_ua = string.gsub(http_ua, "%g", ".")

ts = SCPacketTimeString()
ipver, srcip, dstip, proto, sp, dp = SCFlowTuple()

file:write (ts .. " " .. http_host .. " [**] " .. http_uri .. " [**] " ..
http_ua .. " [**] " .. srcip .. ":" .. sp .. " -> " ..
dstip .. ":" .. dp .. "\n")

file:flush()

196 Chapter 12. Output

Suricata User Guide, Release 4.0.0-beta1

http = http + 1
end

function deinit (args)
SCLogInfo ("HTTP transactions logged: " .. http);
file:close(file)

end

YAML

To enable the lua output, add the ‘lua’ output and add one or more scripts like so:

outputs:
- lua:

enabled: yes
scripts-dir: /etc/suricata/lua-output/
scripts:

- tcp-data.lua
- flow.lua

The scripts-dir option is optional. It makes Suricata load the scripts from this directory. Otherwise scripts will be
loaded from the current workdir.

packet

Initialize with:

function init (args)
local needs = {}
needs["type"] = "packet"
return needs

end

SCPacketTimestamp

Get packets timestamp as 2 numbers: seconds & microseconds elapsed since 1970-01-01 00:00:00 UTC.

function log(args)
local sec, usec = SCPacketTimestamp()

end

SCPacketTimeString

Add SCPacketTimeString to get the packets time string in the format: 11/24/2009-18:57:25.179869

function log(args)
ts = SCPacketTimeString()

SCPacketTuple

ipver, srcip, dstip, proto, sp, dp = SCPacketTuple()

12.2. Lua Output 197

Suricata User Guide, Release 4.0.0-beta1

SCPacketPayload

p = SCPacketPayload()

flow

function init (args)
local needs = {}
needs["type"] = "flow"
return needs

end

SCFlowTimestamps

Get timestamps (seconds and microseconds) of the first and the last packet from the flow.

startts, lastts = SCFlowTimestamps()
startts_s, lastts_s, startts_us, lastts_us = SCFlowTimestamps()

SCFlowTimeString

startts = SCFlowTimeString()

SCFlowTuple

ipver, srcip, dstip, proto, sp, dp = SCFlowTuple()

SCFlowAppLayerProto

Get alprotos as string from the flow. If a alproto is not (yet) known, it returns “unknown”.

Example:

function log(args)
alproto = SCFlowAppLayerProto()
if alproto ~= nil then

print (alproto)
end

end

Returns 5 values: <alproto> <alproto_ts> <alproto_tc> <alproto_orig> <alproto_expect>

Orig and expect are used when changing and upgrading protocols. In a SMTP STARTTLS case, orig would normally
be set to “smtp” and expect to “tls”.

SCFlowHasAlerts

Returns true if flow has alerts.

Example:

198 Chapter 12. Output

Suricata User Guide, Release 4.0.0-beta1

function log(args)
has_alerts = SCFlowHasAlerts()
if has_alerts then

-- do something
end

end

SCFlowStats

Gets the packet and byte counts per flow.

tscnt, tsbytes, tccnt, tcbytes = SCFlowStats()

SCFlowId

Gets the flow id.

id = SCFlowId()

Note that simply printing ‘id’ will likely result in printing a scientific notation. To avoid that, simply do:

id = SCFlowId()
idstr = string.format("%.0f",id)
print ("Flow ID: " .. idstr .. "\n")

http

Init with:

function init (args)
local needs = {}
needs["protocol"] = "http"
return needs

end

HttpGetRequestBody and HttpGetResponseBody.

Make normalized body data available to the script through HttpGetRequestBody and HttpGetResponseBody.

There no guarantees that all of the body will be availble.

Example:

function log(args)
a, o, e = HttpGetResponseBody();
--print("offset " .. o .. " end " .. e)
for n, v in ipairs(a) do

print(v)
end

end

12.2. Lua Output 199

Suricata User Guide, Release 4.0.0-beta1

HttpGetRequestHost

Get the host from libhtp’s tx->request_hostname, which can either be the host portion of the url or the host portion of
the Host header.

Example:

http_host = HttpGetRequestHost()
if http_host == nil then

http_host = "<hostname unknown>"
end

HttpGetRequestHeader

http_ua = HttpGetRequestHeader("User-Agent")
if http_ua == nil then

http_ua = "<useragent unknown>"
end

HttpGetResponseHeader

server = HttpGetResponseHeader("Server");
print ("Server: " .. server);

HttpGetRequestLine

rl = HttpGetRequestLine();
print ("Request Line: " .. rl);

HttpGetResponseLine

rsl = HttpGetResponseLine();
print ("Response Line: " .. rsl);

HttpGetRawRequestHeaders

rh = HttpGetRawRequestHeaders();
print ("Raw Request Headers: " .. rh);

HttpGetRawResponseHeaders

rh = HttpGetRawResponseHeaders();
print ("Raw Response Headers: " .. rh);

HttpGetRequestUriRaw

200 Chapter 12. Output

Suricata User Guide, Release 4.0.0-beta1

http_uri = HttpGetRequestUriRaw()
if http_uri == nil then

http_uri = "<unknown>"
end

HttpGetRequestUriNormalized

http_uri = HttpGetRequestUriNormalized()
if http_uri == nil then

http_uri = "<unknown>"
end

HttpGetRequestHeaders

a = HttpGetRequestHeaders();
for n, v in pairs(a) do

print(n,v)
end

HttpGetResponseHeaders

a = HttpGetResponseHeaders();
for n, v in pairs(a) do

print(n,v)
end

DNS

DnsGetQueries

dns_query = DnsGetQueries();
if dns_query ~= nil then

for n, t in pairs(dns_query) do
rrname = t["rrname"]
rrtype = t["type"]

print ("QUERY: " .. ts .. " " .. rrname .. " [**] " .. rrtype .. " [**] " ..
"TODO" .. " [**] " .. srcip .. ":" .. sp .. " -> " ..
dstip .. ":" .. dp)

end
end

returns a table of tables

DnsGetAnswers

dns_answers = DnsGetAnswers();
if dns_answers ~= nil then

for n, t in pairs(dns_answers) do
rrname = t["rrname"]
rrtype = t["type"]

12.2. Lua Output 201

Suricata User Guide, Release 4.0.0-beta1

ttl = t["ttl"]

print ("ANSWER: " .. ts .. " " .. rrname .. " [**] " .. rrtype .. " [**] " ..
ttl .. " [**] " .. srcip .. ":" .. sp .. " -> " ..
dstip .. ":" .. dp)

end
end

returns a table of tables

DnsGetAuthorities

dns_auth = DnsGetAuthorities();
if dns_auth ~= nil then

for n, t in pairs(dns_auth) do
rrname = t["rrname"]
rrtype = t["type"]
ttl = t["ttl"]

print ("AUTHORITY: " .. ts .. " " .. rrname .. " [**] " .. rrtype .. " [**] " ..
ttl .. " [**] " .. srcip .. ":" .. sp .. " -> " ..
dstip .. ":" .. dp)

end
end

returns a table of tables

DnsGetRcode

rcode = DnsGetRcode();
if rcode == nil then

return 0
end
print (rcode)

returns a lua string with the error message, or nil

DnsGetRecursionDesired

if DnsGetRecursionDesired() == true then
print ("RECURSION DESIRED")

end

returns a bool

TLS

Initialize with:

function init (args)
local needs = {}
needs["protocol"] = "tls"
return needs

end

202 Chapter 12. Output

Suricata User Guide, Release 4.0.0-beta1

TlsGetCertInfo

Make certificate information available to the script through TlsGetCertInfo.

Example:

function log (args)
version, subject, issuer, fingerprint = TlsGetCertInfo()
if version == nil then

return 0
end

end

TlsGetCertSerial

Get TLS certificate serial number through TlsGetCertSerial.

Example:

function log (args)
serial = TlsGetCertSerial()
if serial then

-- do something
end

end

SSH

Initialize with:

function init (args)
local needs = {}
needs["protocol"] = "ssh"
return needs

end

SshGetServerProtoVersion

Get SSH protocol version used by the server through SshGetServerProtoVersion.

Example:

function log (args)
version = SshGetServerProtoVersion()
if version == nil then

return 0
end

end

SshGetServerSoftwareVersion

Get SSH software used by the server through SshGetServerSoftwareVersion.

Example:

12.2. Lua Output 203

Suricata User Guide, Release 4.0.0-beta1

function log (args)
software = SshGetServerSoftwareVersion()
if software == nil then

return 0
end

end

SshGetClientProtoVersion

Get SSH protocol version used by the client through SshGetClientProtoVersion.

Example:

function log (args)
version = SshGetClientProtoVersion()
if version == nil then

return 0
end

end

SshGetClientSoftwareVersion

Get SSH software used by the client through SshGetClientSoftwareVersion.

Example:

function log (args)
software = SshGetClientSoftwareVersion()
if software == nil then

return 0
end

end

Files

To use the file logging API, the script’s init() function needs to look like:

function init (args)
local needs = {}
needs['type'] = 'file'
return needs

end

SCFileInfo

fileid, txid, name, size, magic, md5 = SCFileInfo()

returns fileid (number), txid (number), name (string), size (number), magic (string), md5 in hex (string)

SCFileState

state, stored = SCFileState()

returns state (string), stored (bool)

204 Chapter 12. Output

Suricata User Guide, Release 4.0.0-beta1

Alerts

Alerts are a subset of the ‘packet’ logger:

function init (args)
local needs = {}
needs["type"] = "packet"
needs["filter"] = "alerts"
return needs

end

SCRuleIds

sid, rev, gid = SCRuleIds()

SCRuleMsg

msg = SCRuleMsg()

SCRuleClass

class, prio = SCRuleClass()

Streaming Data

Streaming data can currently log out reassembled TCP data and normalized HTTP data. The script will be invoked for
each consecutive data chunk.

In case of TCP reassembled data, all possible overlaps are removed according to the host OS settings.

function init (args)
local needs = {}
needs["type"] = "streaming"
needs["filter"] = "tcp"
return needs

end

In case of HTTP body data, the bodies are unzipped and dechunked if applicable.

function init (args)
local needs = {}
needs["type"] = "streaming"
needs["protocol"] = "http"
return needs

end

SCStreamingBuffer

function log(args)
data = SCStreamingBuffer()
hex_dump(data)

end

12.2. Lua Output 205

Suricata User Guide, Release 4.0.0-beta1

Misc

SCThreadInfo

tid, tname, tgroup = SCThreadInfo()

It gives: tid (integer), tname (string), tgroup (string)

SCLogError, SCLogWarning, SCLogNotice, SCLogInfo, SCLogDebug

Print a message. It will go into the outputs defined in the yaml. Whether it will be printed depends on the log level.

Example:

SCLogError("some error message")

SCLogPath

Expose the log path.

name = "fast_lua.log"
function setup (args)

filename = SCLogPath() .. "/" .. name
file = assert(io.open(filename, "a"))

end

Syslog Alerting Compatibility

Suricata can alert via sylog which is a very handy feature for central log collection, compliance, and reporting to a
SIEM. Instructions on setting this up can be found in the .yaml file in the section where you can configure what type
of alert (and other) logging you would like.

However, there are different syslog daemons and there can be parsing issues with the syslog format a SIEM expects
and what syslog format Suricata sends. The syslog format from Suricata is dependent on the syslog daemon running
on the Suricata sensor but often the format it sends is not the format the SIEM expects and cannot parse it properly.

Popular syslog daemons

• syslogd - logs system messages

• syslog-ng - logs system messages but also suports TCP, TLS, and other enhanced enterprise features

• rsyslogd - logs system messages but also support TCP, TLS, multi-threading, and other enhanced features

• klogd - logs kernel messages

• sysklogd - basically a bundle of syslogd and klogd

If the syslog format the Suricata sensor is sending is not compatible with what your SIEM or syslog collector expects,
you will need to fix this. You can do this on your SIEM if it is capable of being able to be configured to interpret the
message, or by configuring the syslog daemon on the Suricata sensor itself to send in a format you SIEM can parse.
The latter can be done by applying a template to your syslog config file.

206 Chapter 12. Output

Suricata User Guide, Release 4.0.0-beta1

Finding what syslog daemon you are using

There are many ways to find out what syslog daemon you are using but here is one way:

cd /etc/init.d
ls | grep syslog

You should see a file with the word syslog in it, e.g. “syslog”, “rsyslogd”, etc. Obviously if the name is “rsyslogd”
you can be fairly confident you are running rsyslogd. If unsure or the filename is just “syslog”, take a look at that file.
For example, if it was “rsyslogd”, run:

less rsyslogd

At the top you should see a comment line that looks something like this:

rsyslog Starts rsyslogd/rklogd.

Locate those files and look at them to give you clues as to what syslog daemon you are running. Also look in the
start() section of the file you ran “less” on and see what binaries get started because that can give you clues as well.

Example

Here is an example where the Suricata sensor is sending syslog messages in rsyslogd format but the SIEM is expecting
and parsing them in a sysklogd format. In the syslog configuration file (ususally in /etc with a filename like rsyslog.conf
or syslog.conf), first add the template:

$template sysklogd, "<%PRI%>%syslogtag:1:32%%msg:::sp-if-no-1st-sp%%msg%"

Then send it to the syslog server with the template applied:

user.alert @10.8.75.24:514;sysklogd

Of course this is just one example and it will probably be different in your environment depending on what syslog
daemons and SIEM you use but hopefully this will point you in the right direction.

Custom http logging

As of Suricata 1.3.1 you can enable a custom http logging option.

In your Suricata.yaml, find the http-log section and edit as follows:

- http-log:
enabled: yes
filename: http.log
custom: yes # enable the custom logging format (defined by custom format)
customformat: "%{%D-%H:%M:%S}t.%z %{X-Forwarded-For}i %{User-agent}i %H %m %h %u %s %B %a:%p -> %A:%P"
append: no
#extended: yes # enable this for extended logging information
#filetype: regular # 'regular', 'unix_stream' or 'unix_dgram'

And in your http.log file you would get the following, for example:

8/28/12-22:14:21.101619 - Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:11.0) Gecko/20100101 Firefox/11.0 HTTP/1.1 GET us.cnn.com /video/data/3.0/video/world/2012/08/28/hancocks-korea-typhoon-bolavan.cnn/index.xml 200 16856 192.168.1.91:45111 -> 157.166.255.18:80

08/28/12-22:14:30.693856 - Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:11.0) Gecko/20100101 Firefox/11.0 HTTP/1.1 GET us.cnn.com /video/data/3.0/video/showbiz/2012/08/28/conan-reports-from-rnc-convention.teamcoco/index.xml 200 15789 192.168.1.91:45108 -> 157.166.255.18:80

The list of supported format strings is the following:

12.4. Custom http logging 207

Suricata User Guide, Release 4.0.0-beta1

• %h - Host HTTP Header (remote host name). ie: google.com

• %H - Request Protocol. ie: HTTP/1.1

• %m - Request Method. ie: GET

• %u - URL including query string. ie: /search?q=suricata

• %{header_name}i - contents of the defined HTTP Request Header name. ie:

• %{User-agent}i: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:11.0) Gecko/20100101 Firefox/11.0

• %{X-Forwarded-For}i: outputs the IP address contained in the X-Forwarded-For HTTP header (inserted by a
reverse proxy)

• %s - return status code. In the case of 301 and 302 it will print the url in brackets. ie: 200

• %B - response size in bytes. ie: 15789

• %{header_name}o - contents of the defined HTTP Response Header name

• %{strftime_format]t - timestamp of the HTTP transaction in the selected strftime format. ie: 08/28/12-22:14:30

• %z - precision time in useconds. ie: 693856

• %a - client IP address

• %p - client port number

• %A - server IP address

• %P - server port number

Any non printable character will be represented by its byte value in hexadecimal format (|XX|, where XX is the hex
code)

Custom tls logging

In your Suricata.yaml, find the tls-log section and edit as follows:

- tls-log:
enabled: yes # Log TLS connections.
filename: tls.log # File to store TLS logs.
append: yes
custom: yes # enabled the custom logging format (defined by customformat)
customformat: "%{%D-%H:%M:%S}t.%z %a:%p -> %A:%P %n %n %d %D"

And in your tls.log file you would get the following, for example:

12/03/16-19:20:14.85859 10.10.10.4:58274 -> 192.0.78.24:443 VERSION='TLS 1.2' suricata-ids.org NOTBEFORE='2016-10-27T20:36:00' NOTAFTER='2017-01-25T20:36:00'

:: 12/03/16-19:20:20.36849 10.10.10.4:39472 -> 192.30.253.113:443 VERSION=’TLS 1.2’ github.com
NOTBEFORE=‘2016-03-10T00:00:00’ NOTAFTER=‘2018-05-17T12:00:00’

The list of supported format strings is the following:

• %n - client SNI

• %v - TLS/SSL version

• %d - certificate date not before

• %D - certificate date not after

• %f - certificate fingerprint SHA1

208 Chapter 12. Output

Suricata User Guide, Release 4.0.0-beta1

• %s - certificate subject

• %i - certificate issuer dn

• %E - extended format

• %{strftime_format}t - timestamp of the TLS transaction in the selected strftime format. ie: 08/28/12-22:14:30

• %z - precision time in useconds. ie: 693856

• %a - client IP address

• %p - client port number

• %A - server IP address

• %P - server port number

Any non printable character will be represented by its byte value in hexadecimal format (|XX|, where XX is the hex
code)

12.5. Custom tls logging 209

Suricata User Guide, Release 4.0.0-beta1

210 Chapter 12. Output

CHAPTER

THIRTEEN

FILE EXTRACTION

Architecture

The file extraction code works on top of the HTTP and SMTP parsers. The HTTP parser takes care of dechunking
and unzipping the request and/or response data if necessary. The HTTP/SMTP parsers runs on top of the stream
reassembly engine.

This means that settings in the stream engine, reassembly engine and the HTTP parser all affect the workings of the
file extraction.

What files are actually extracted and stored to disk is controlled by the rule language.

Settings

stream.checksum_validation controls whether or not the stream engine rejects packets with invalid checksums. A good
idea normally, but the network interface performs checksum offloading a lot of packets may seem to be broken. This
setting is enabled by default, and can be disabled by setting to “no”. Note that the checksum handling can be controlled
per interface, see “checksum_checks” in example configuration.

file-store.stream-depth controls how far into a stream reassembly is done. Beyond this value no reassembly will be
done. This means that after this value the HTTP session will no longer be tracked. By default a settings of 1 Megabyte
is used. 0 sets it to unlimited. If set to no, it is disabled and stream.reassembly.depth is considered.

libhtp.default-config.request-body-limit / libhtp.server-config.<config>.request-body-limit controls how much of the
HTTP request body is tracked for inspection by the http_client_body keyword, but also used to limit file inspection. A
value of 0 means unlimited.

libhtp.default-config.response-body-limit / libhtp.server-config.<config>.response-body-limit is like the request body
limit, only it applies to the HTTP response body.

Output

For file extraction two separate output modules were created: “file-log” and “file-store”. They need to be enabled in
the Suricata.yaml. For “file-store”, the “files” drop dir must be configured.

- file-store:
enabled: yes # set to yes to enable
log-dir: files # directory to store the files
force-magic: no # force logging magic on all stored files
force-md5: no # force logging of md5 checksums
stream-depth: 1mb # reassemble 1mb into a stream, set to no to disable

211

Suricata User Guide, Release 4.0.0-beta1

waldo: file.waldo # waldo file to store the file_id across runs
max-open-files: 0 # how many files to keep open (O means none)
write-meta: yes # write a .meta file if set to yes

Each file that is stored with have a name “file.<id>”. The id will be reset and files will be overwritten unless the waldo
option is used. A “file.<id>.meta” file is generated containing file metadata if write-meta is set to yes (default).

- file-log:
enabled: yes
filename: files-json.log
append: yes
#filetype: regular # 'regular', 'unix_stream' or 'unix_dgram'
force-magic: no # force logging magic on all logged files
force-md5: no # force logging of md5 checksums

Rules

Without rules in place no extraction will happen. The simplest rule would be:

alert http any any -> any any (msg:"FILE store all"; filestore; sid:1; rev:1;)

This will simply store all files to disk.

Want to store all files with a pdf extension?

alert http any any -> any any (msg:"FILE PDF file claimed"; fileext:"pdf"; filestore; sid:2; rev:1;)

Or rather all actual pdf files?

alert http any any -> any any (msg:"FILE pdf detected"; filemagic:"PDF document"; filestore; sid:3; rev:1;)

Bundled with the Suricata download is a file with more example rules. In the archive, go to the rules/ directory and
check the files.rules file.

MD5

Suricata can calculate MD5 checksums of files on the fly and log them. See Storing MD5s checksums for an explana-
tion on how to enable this.

Storing MD5s checksums

Configuration

In the suricata yaml:

- file-store:
enabled: yes # set to yes to enable
log-dir: files # directory to store the files
force-magic: yes # force logging magic on all stored files
force-md5: yes # force logging of md5 checksums
#waldo: file.waldo # waldo file to store the file_id across runs

Optionally, for JSON output:

212 Chapter 13. File Extraction

Suricata User Guide, Release 4.0.0-beta1

- file-log:
enabled: yes
filename: files-json.log
append: no

Other settings affecting File Extraction

stream:
memcap: 64mb
checksum-validation: yes # reject wrong csums
inline: no # no inline mode
reassembly:
memcap: 32mb
depth: 0 # reassemble all of a stream
toserver-chunk-size: 2560
toclient-chunk-size: 2560

Make sure we have depth: 0 so all files can be tracked fully.

libhtp:
default-config:
personality: IDS
Can be specified in kb, mb, gb. Just a number indicates
it's in bytes.
request-body-limit: 0
response-body-limit: 0

Make sure we have request-body-limit: 0 and response-body-limit: 0

Testing

For the purpose of testing we use this rule only in a file.rules (a test/example file):

alert http any any -> any any (msg:"FILE store all"; filestore; sid:1; rev:1;)

This rule above will save all the file data for files that are opened/downloaded through HTTP

Start Suricata (-S option loads ONLY the specified rule file, with disregard if any other rules that are enabled in
suricata.yaml):

suricata -c /etc/suricata/suricata.yaml -S file.rules -i eth0

Meta data:

TIME: 05/01/2012-11:09:52.425751
SRC IP: 2.23.144.170
DST IP: 192.168.1.91
PROTO: 6
SRC PORT: 80
DST PORT: 51598
HTTP URI: /en/US/prod/collateral/routers/ps5855/prod_brochure0900aecd8019dc1f.pdf
HTTP HOST: www.cisco.com
HTTP REFERER: http://www.cisco.com/c/en/us/products/routers/3800-series-integrated-services-routers-isr/index.html
FILENAME: /en/US/prod/collateral/routers/ps5855/prod_brochure0900aecd8019dc1f.pdf
MAGIC: PDF document, version 1.6
STATE: CLOSED
MD5: 59eba188e52467adc11bf2442ee5bf57
SIZE: 9485123

13.5. MD5 213

Suricata User Guide, Release 4.0.0-beta1

and in files-json.log (or eve.json) :

{ "id": 1, "timestamp": "05\/01\/2012-11:10:27.693583", "ipver": 4, "srcip": "2.23.144.170", "dstip": "192.168.1.91", "protocol": 6, "sp": 80, "dp": 51598, "http_uri": "\/en\/US\/prod\/collateral\/routers\/ps5855\/prod_brochure0900aecd8019dc1f.pdf", "http_host": "www.cisco.com", "http_referer": "http:\/\/www.google.com\/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDAQFjAA&url=http%3A%2F%2Fwww.cisco.com%2Fen%2FUS%2Fprod%2Fcollateral%2Frouters%2Fps5855%2Fprod_brochure0900aecd8019dc1f.pdf&ei=OqyfT9eoJubi4QTyiamhAw&usg=AFQjCNGdjDBpBDfQv2r3VogSH41V6T5x9Q", "filename": "\/en\/US\/prod\/collateral\/routers\/ps5855\/prod_brochure0900aecd8019dc1f.pdf", "magic": "PDF document, version 1.6", "state": "CLOSED", "md5": "59eba188e52467adc11bf2442ee5bf57", "stored": true, "size": 9485123 }
{ "id": 12, "timestamp": "05\/01\/2012-11:12:57.421420", "ipver": 4, "srcip": "2.23.144.170", "dstip": "192.168.1.91", "protocol": 6, "sp": 80, "dp": 51598, "http_uri": "\/en\/US\/prod\/collateral\/routers\/ps5855\/prod_brochure0900aecd8019dc1f.pdf", "http_host": "www.cisco.com", "http_referer": "http:\/\/www.google.com\/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDAQFjAA&url=http%3A%2F%2Fwww.cisco.com%2Fen%2FUS%2Fprod%2Fcollateral%2Frouters%2Fps5855%2Fprod_brochure0900aecd8019dc1f.pdf&ei=OqyfT9eoJubi4QTyiamhAw&usg=AFQjCNGdjDBpBDfQv2r3VogSH41V6T5x9Q", "filename": "\/en\/US\/prod\/collateral\/routers\/ps5855\/prod_brochure0900aecd8019dc1f.pdf", "magic": "PDF document, version 1.6", "state": "CLOSED", "md5": "59eba188e52467adc11bf2442ee5bf57", "stored": true, "size": 9485123 }

Log all MD5s without any rules

If you would like to log MD5s for everything and anything that passes through the traffic that you are inspecting with
Suricata, but not log the files themselves, all you have to do is disable file-store and enable only the JSON output with
forced MD5s - in suricata.yaml like so:

- file-store:
enabled: no # set to yes to enable
log-dir: files # directory to store the files
force-magic: yes # force logging magic on all stored files
force-md5: yes # force logging of md5 checksums
#waldo: file.waldo # waldo file to store the file_id across runs

- file-log:
enabled: yes
filename: files-json.log
append: no
#filetype: regular # 'regular', 'unix_stream' or 'unix_dgram'
force-magic: yes # force logging magic on all logged files
force-md5: yes # force logging of md5 checksums

Public SHA1 MD5 data sets

National Software Reference Library - http://www.nsrl.nist.gov/Downloads.htm

214 Chapter 13. File Extraction

http://www.nsrl.nist.gov/Downloads.htm

CHAPTER

FOURTEEN

PUBLIC DATA SETS

Collections of pcaps for testing, profiling.

DARPA sets: http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/

MAWI sets (pkt headers only, no payloads): http://mawi.wide.ad.jp/mawi/samplepoint-F/2012/

MACCDC: http://www.netresec.com/?page=MACCDC

Netresec: http://www.netresec.com/?page=PcapFiles

Wireshark: https://wiki.wireshark.org/SampleCaptures

Security Onion collection: https://github.com/security-onion-solutions/security-onion/wiki/Pcaps

215

http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
http://mawi.wide.ad.jp/mawi/samplepoint-F/2012/
http://www.netresec.com/?page=MACCDC
http://www.netresec.com/?page=PcapFiles
https://wiki.wireshark.org/SampleCaptures
https://github.com/security-onion-solutions/security-onion/wiki/Pcaps

Suricata User Guide, Release 4.0.0-beta1

216 Chapter 14. Public Data Sets

CHAPTER

FIFTEEN

USING CAPTURE HARDWARE

Endace DAG

Suricata comes with native Endace DAG card support. This means Suricata can use the libdag interface directly,
instead of a libpcap wrapper (which should also work).

Steps:

Configure with DAG support:

./configure --enable-dag --prefix=/usr --sysconfdir=/etc --localstatedir=/var
make
sudo make install

Results in:

Suricata Configuration:
AF_PACKET support: no
PF_RING support: no
NFQueue support: no
IPFW support: no
DAG enabled: yes
Napatech enabled: no

Start with:

suricata -c suricata.yaml --dag 0:0

Started up!

[5570] 10/7/2012 -- 13:52:30 - (source-erf-dag.c:262) <Info> (ReceiveErfDagThreadInit) -- Attached and started stream: 0 on DAG: /dev/dag0
[5570] 10/7/2012 -- 13:52:30 - (source-erf-dag.c:288) <Info> (ReceiveErfDagThreadInit) -- Starting processing packets from stream: 0 on DAG: /dev/dag0

Napatech Suricata Installation Guide

Contents

• Introduction

• Package Installation

• Basic Configuration

• Advanced Multithreaded Configuration

217

Suricata User Guide, Release 4.0.0-beta1

Introduction

Napatech packet capture accelerator cards can greatly improve the performance of your Suricata deployment using
these hardware based features:

• On board burst buffering (up to 12GB)

• Zero-copy kernel bypass DMA

• Non-blocking PCIe performance

• Port merging

• Load distribution to up 128 host buffers

• Precise timestamping

• Accurate time synchronization

The Napatech Software Suite (driver package) comes in two varieties, NAC and OEM. The NAC package distributes
deb and rpm packages to ease the installation. The OEM package uses a proprietary shell script to handle the installa-
tion process. In either case, gcc, make and the kernel header files are required to compile the kernel module and install
the software.

Package Installation

Note that make, gcc, and the kernel headers are required for installation

Root privileges are also required

Napatech NAC Package

Red Hat Based Distros:

$ yum install kernel-devel-$(uname -r) gcc make ncurses-libs
$ yum install nac-pcap-<release>.x86_64.rpm

Some distributions will require you to use the –nogpgcheck option with yum for the NAC Software Suite package file:

$ yum --nogpgcheck install nac-pcap-<release>.x86_64.rpm

Debian Based Distros:

$ apt-get install linux-headers-$(uname .r) gcc make libncurses5
$ dpkg .i nac-pcap_<release>_amd64.deb

To complete installation for all distros stop ntservice:

$ /opt/napatech3/bin/ntstop.sh -m

Remove these existing setup files:

$ cd /opt/napatech3/config
$ rm ntservice.ini setup.ini

Restart ntservice (a new ntservice.ini configuration file will be generated automatically):

$ /opt/napatech3/bin/ntstart.sh -m

218 Chapter 15. Using Capture Hardware

Suricata User Guide, Release 4.0.0-beta1

Napatech OEM Package

Note that you will be prompted to install the Napatech libpcap library. Answer “yes” if you would like to use the
Napatech card to capture packets in WIreshark, tcpdump, or another pcap based application. Libpcap is not needed
for Suricata as native Napatech API support is included

Red Hat Based Distros:

$ yum install kernel-devel-$(uname -r) gcc make
$./package_install_3gd.sh

Debian Based Distros:

$ apt-get install linux-headers-$(uname .r) gcc make
$./package_install_3gd.sh

To complete installation for all distros ntservice:

$ /opt/napatech3/bin/ntstart.sh -m

Suricata Installation

After downloading and extracting the Suricata tarball, you need to run configure to enable Napatech support and
prepare for compilation:

$./configure --enable-napatech --with-napatech-includes=/opt/napatech3/include --with-napatech-libraries=/opt/napatech3/lib
$ make
$ make install-full

Now edit the suricata.yaml file to configure the maximum number of streams to use. If you plan on using the load
distribution (RSS - like) feature in the Napatech accelerator, then the list should contain the same number of streams
as host buffers defined in ntservice.ini:

Napatech:
The Host Buffer Allowance for all streams
(-1 = OFF, 1 - 100 = percentage of the host buffer that can be held back)
hba: -1

use_all_streams set to "yes" will query the Napatech service for all configured
streams and listen on all of them. When set to "no" the streams config array
will be used.
use-all-streams: yes

The streams to listen on
streams: [0, 1, 2, 3, 4, 5, 6, 7]

Basic Configuration

For the basic installation we will setup the Napatech capture accelerator to merge all physical ports into single stream
that Suricata can read from. for this configuration, Suricata will handle the packet distribution to multiple threads.

Here are the lines that need changing in /opt/napatech3/bin/ntservice.ini for best single buffer performance:

TimeSyncReferencePriority = OSTime # Timestamp clock synchronized to the OS
HostBuffersRx = [1,16,0] # [number of host buffers, Size(MB), NUMA node]

Stop and restart ntservice after making changes to ntservice:

15.2. Napatech Suricata Installation Guide 219

Suricata User Guide, Release 4.0.0-beta1

$ /opt/napatech3/bin/ntstop.sh -m
$ /opt/napatech3/bin/ntstart.sh -m

Now we need to execute a few NTPL (Napatech Programming Language) commands to complete the setup. Create a
file will the following commands:

Delete=All # Delete any existing filters
Setup[numaNode=0] = streamid==0 # Set stream ID 0 to NUMA 0
Assign[priority=0; streamid=0]= all # Assign all phisical ports to stream ID 0

Next execute those command using the ntpl tool:

$ /opt/napatech3/bin/ntpl -f <my_ntpl_file>

Now you are ready to start suricata:

$ suricata -c /usr/local/etc/suricata/suricata.yaml --napatech --runmode workers

Advanced Multithreaded Configuration

Now let’s do a more advanced configuration where we will use the load distribution (RSS - like) capability in the
accelerator. We will create 8 streams and setup the accelerator to distribute the load based on a 5 tuple hash. Increasing
buffer size will minimize packet loss only if your CPU cores are fully saturated. Setting the minimum buffer size
(16MB) will gave the best performance (minimize L3 cache hits) if your CPU cores are keeping up.

Note that it is extremely important that the NUMA node the host buffers are define in is the same physical CPU socket
that the Napatech accelerator is plugged into

First let’s modify the ntservice.ini file to increase the number and size of the host buffers:

HostBuffersRx = [8,256,0] # [number of host buffers, Size (MB), NUMA node]

Stop and restart ntservice after making changes to ntservice:

$ /opt/napatech3/bin/ntstop.sh -m
$ /opt/napatech3/bin/ntstart.sh -m

Now let’s assign the streams to host buffers and configure the load distribution. The load distribution will be setup to
support both tunneled and non-tunneled traffic. Create a file that contains the ntpl commands below:

Delete=All # Delete any existing filters
Setup[numaNode=0] = streamid==0
Setup[numaNode=0] = streamid==1
Setup[numaNode=0] = streamid==2
Setup[numaNode=0] = streamid==3
Setup[numaNode=0] = streamid==4
Setup[numaNode=0] = streamid==5
Setup[numaNode=0] = streamid==6
Setup[numaNode=0] = streamid==7
HashMode[priority=4]=Hash5TupleSorted
Assign[priority=0; streamid=(0..7)]= all

Next execute those command using the ntpl tool:

$ /opt/napatech3/bin/ntpl -f <my_ntpl_file>

Now you are ready to start Suricata:

220 Chapter 15. Using Capture Hardware

Suricata User Guide, Release 4.0.0-beta1

$ suricata -c /usr/local/etc/suricata/suricata.yaml --napatech --runmode workers

Support

Contact a support engineer at: ntsupport@napatech.com

Myricom

From: http://blog.inliniac.net/2012/07/10/suricata-on-myricom-capture-cards/

In this guide I’ll describe using the Myricom libpcap support. I’m going to assume you installed the card properly,
installed the Sniffer driver and made sure that all works. Make sure that in your dmesg you see that the card is in
sniffer mode:

[2102.860241] myri_snf INFO: eth4: Link0 is UP
[2101.341965] myri_snf INFO: eth5: Link0 is UP

I have installed the Myricom runtime and libraries in /opt/snf

Compile Suricata against Myricom’s libpcap:

./configure --with-libpcap-includes=/opt/snf/include/ --with-libpcap-libraries=/opt/snf/lib/ --prefix=/usr --sysconfdir=/etc --localstatedir=/var
make
sudo make install

Next, configure the amount of ringbuffers. I’m going to work with 8 here, as my quad core + hyper threading has 8
logical CPU’s. See below for additional information about the buffer-size parameter.

pcap:
- interface: eth5
threads: 8
buffer-size: 512kb
checksum-checks: no

The 8 threads setting makes Suricata create 8 reader threads for eth5. The Myricom driver makes sure each of those is
attached to it’s own ringbuffer.

Then start Suricata as follows:

SNF_NUM_RINGS=8 SNF_FLAGS=0x1 suricata -c suricata.yaml -i eth5 --runmode=workers

If you want 16 ringbuffers, update the “threads” variable in your yaml to 16 and start Suricata:

SNF_NUM_RINGS=16 SNF_FLAGS=0x1 suricata -c suricata.yaml -i eth5 --runmode=workers

Note that the pcap.buffer-size yaml setting shown above is currently ignored when using Myricom cards. The value is
passed through to the pcap_set_buffer_size libpcap API within the Suricata source code. From Myricom support:

“The libpcap interface to Sniffer10G ignores the pcap_set_buffer_size() value. The call to snf_open() uses zero as the dataring_size which informs the Sniffer library to use a default value or the value from the SNF_DATARING_SIZE environment variable."

The following pull request opened by Myricom in the libpcap project indicates that a future SNF software release
could provide support for setting the SNF_DATARING_SIZE via the pcap.buffer-size yaml setting:

• https://github.com/the-tcpdump-group/libpcap/pull/435

Until then, the data ring and descriptor ring values can be explicitly set using the SNF_DATARING_SIZE and
SNF_DESCRING_SIZE environment variables, respectively.

15.3. Myricom 221

mailto:ntsupport@napatech.com
http://blog.inliniac.net/2012/07/10/suricata-on-myricom-capture-cards/
https://github.com/the-tcpdump-group/libpcap/pull/435

Suricata User Guide, Release 4.0.0-beta1

The SNF_DATARING_SIZE is the total amount of memory to be used for storing incoming packet data. This size
is shared across all rings. The SNF_DESCRING_SIZE is the total amount of memory to be used for storing meta
information about the packets (packet lengths, offsets, timestamps). This size is also shared across all rings.

Myricom recommends that the descriptor ring be 1/4 the size of the data ring, but the ratio can be modified based
on your traffic profile. If not set explicitly, Myricom uses the following default values: SNF_DATARING_SIZE =
256MB, and SNF_DESCRING_SIZE = 64MB

Expanding on the 16 thread example above, you can start Suricata with a 16GB Data Ring and a 4GB Descriptor Ring
using the following command:

SNF_NUM_RINGS=16 SNF_DATARING_SIZE=17179869184 SNF_DESCRING_SIZE=4294967296 SNF_FLAGS=0x1 suricata -c suricata.yaml -i eth5 --runmode=workers

Debug Info

Myricom also provides a means for obtaining debug information. This can be useful for verifying your configuration
and gathering additional information. Setting SNF_DEBUG_MASK=3 enables debug information, and optionally
setting the SNF_DEBUG_FILENAME allows you to specify the location of the output file.

Following through with the example:

SNF_NUM_RINGS=16 SNF_DATARING_SIZE=17179869184 SNF_DESCRING_SIZE=4294967296 SNF_FLAGS=0x1 SNF_DEBUG_MASK=3 SNF_DEBUG_FILENAME="/tmp/snf.out" suricata -c suricata.yaml -i eth5 --runmode=workers

Additional Info

• http://www.40gbe.net/index_files/be59da7f2ab5bf0a299ab99ef441bb2e-28.html

• http://o-www.emulex.com/blogs/implementers/2012/07/23/black-hat-usa-2012-emulex-faststack-sniffer10g-
product-demo-emulex-booth/

222 Chapter 15. Using Capture Hardware

http://www.40gbe.net/index_files/be59da7f2ab5bf0a299ab99ef441bb2e-28.html
http://o-www.emulex.com/blogs/implementers/2012/07/23/black-hat-usa-2012-emulex-faststack-sniffer10g-product-demo-emulex-booth/
http://o-www.emulex.com/blogs/implementers/2012/07/23/black-hat-usa-2012-emulex-faststack-sniffer10g-product-demo-emulex-booth/

CHAPTER

SIXTEEN

INTERACTING VIA UNIX SOCKET

Introduction

Suricata can listen to a unix socket and accept commands from the user. The exchange protocol is JSON-based and
the format of the message has been done to be generic.

An example script called suricatasc is provided in the source and installed automatically when installing/updating
Suricata.

The unix socket is enabled by default if libjansson is available.

You need to have libjansson installed:

• libjansson4 - C library for encoding, decoding and manipulating JSON data

• libjansson-dev - C library for encoding, decoding and manipulating JSON data (dev)

• python-simplejson - simple, fast, extensible JSON encoder/decoder for Python

Debian/Ubuntu:

apt-get install libjansson4 libjansson-dev python-simplejson

If libjansson is present on the system , unix socket will be compiled in automatically.

The creation of the socket is managed by setting enabled to ‘yes’ or ‘auto’ under unix-command in Suricata YAML
configuration file:

unix-command:
enabled: yes
#filename: custom.socket # use this to specify an alternate file

The filename variable can be used to set an alternate socket filename. The filename is always relative to the local
state base directory.

Clients are implemented for some language and can be used as code example to write custom scripts:

• Python: https://github.com/inliniac/suricata/blob/master/scripts/suricatasc/suricatasc.in (provided with suricata
and used in this document)

• Perl: https://github.com/aflab/suricatac (a simple Perl client with interactive mode)

• C: https://github.com/regit/SuricataC (a unix socket mode client in C without interactive mode)

Commands in standard running mode

The set of existing commands is the following:

223

https://github.com/inliniac/suricata/blob/master/scripts/suricatasc/suricatasc.in
https://github.com/aflab/suricatac
https://github.com/regit/SuricataC

Suricata User Guide, Release 4.0.0-beta1

• command-list: list available commands

• shutdown: this shutdown suricata

• iface-list: list interfaces where Suricata is sniffing packets

• iface-stat: list statistic for an interface

• help: alias of command-list

• version: display Suricata’s version

• uptime: display Suricata’s uptime

• running-mode: display running mode (workers, autofp, simple)

• capture-mode: display capture system used

• conf-get: get configuration item (see example below)

• dump-counters: dump Suricata’s performance counters

You can access to these commands with the provided example script which is named suricatasc. A typical session
with suricatasc will looks like:

suricatasc
Command list: shutdown, command-list, help, version, uptime, running-mode, capture-mode, conf-get, dump-counters, iface-stat, iface-list, quit
>>> iface-list
Success: {'count': 2, 'ifaces': ['eth0', 'eth1']}
>>> iface-stat eth0
Success: {'pkts': 378, 'drop': 0, 'invalid-checksums': 0}
>>> conf-get unix-command.enabled
Success:
"yes"

Commands on the cmd prompt

You can use suricatasc directly on the command prompt:

root@debian64:~# suricatasc -c version
{'message': '2.1beta2 RELEASE', 'return': 'OK'}
root@debian64:~#
root@debian64:~# suricatasc -c uptime
{'message': 35264, 'return': 'OK'}
root@debian64:~#

NOTE: You need to quote commands involving more than one argument:

root@debian64:~# suricatasc -c "iface-stat eth0"
{'message': {'pkts': 5110429, 'drop': 0, 'invalid-checksums': 0}, 'return': 'OK'}
root@debian64:~#

Pcap processing mode

This mode is one of main motivation behind this code. The idea is to be able to ask to Suricata to treat different pcap
files without having to restart Suricata between the files. This provides you a huge gain in time as you don’t need to
wait for the signature engine to initialize.

To use this mode, start suricata with your preferred YAML file and provide the option --unix-socket as argument:

224 Chapter 16. Interacting via Unix Socket

Suricata User Guide, Release 4.0.0-beta1

suricata -c /etc/suricata-full-sigs.yaml --unix-socket

It is also possible to specify the socket filename as argument:

suricata --unix-socket=custom.socket

In this last case, you will need to provide the complete path to the socket to suricatasc. To do so, you need to pass
the filename as first argument of suricatasc:

suricatasc custom.socket

Once Suricata is started, you can use the provided script suricatasc to connect to the command socket and ask for
pcap treatment:

root@tiger:~# suricatasc
>>> pcap-file /home/benches/file1.pcap /tmp/file1
Success: Successfully added file to list
>>> pcap-file /home/benches/file2.pcap /tmp/file2
Success: Successfully added file to list

You can add multiple files without waiting the result: they will be sequentially processed and the generated log/alert
files will be put into the directory specified as second arguments of the pcap-file command. You need to provide
absolute path to the files and directory as suricata don’t know from where the script has been run.

To know how much files are waiting to get processed, you can do:

>>> pcap-file-number
Success: 3

To get the list of queued files, do:

>>> pcap-file-list
Success: {'count': 2, 'files': ['/home/benches/file1.pcap', '/home/benches/file2.pcap']}

To get current processed file:

>>> pcap-current
Success:
"/tmp/test.pcap"

Build your own client

The protocol is documented in the following page https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Unix_Socket#Protocol

The following session show what is send (SND) and received (RCV) by the server. Initial negotiation is the following:

suricatasc
SND: {"version": "0.1"}
RCV: {"return": "OK"}

Once this is done, command can be issued:

>>> iface-list
SND: {"command": "iface-list"}
RCV: {"message": {"count": 1, "ifaces": ["wlan0"]}, "return": "OK"}
Success: {'count': 1, 'ifaces': ['wlan0']}
>>> iface-stat wlan0
SND: {"command": "iface-stat", "arguments": {"iface": "wlan0"}}

16.5. Build your own client 225

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Unix_Socket#Protocol

Suricata User Guide, Release 4.0.0-beta1

RCV: {"message": {"pkts": 41508, "drop": 0, "invalid-checksums": 0}, "return": "OK"}
Success: {'pkts': 41508, 'drop': 0, 'invalid-checksums': 0}

In pcap-file mode, this gives:

>>> pcap-file /home/eric/git/oisf/benches/sandnet.pcap /tmp/bench
SND: {"command": "pcap-file", "arguments": {"output-dir": "/tmp/bench", "filename": "/home/eric/git/oisf/benches/sandnet.pcap"}}
RCV: {"message": "Successfully added file to list", "return": "OK"}
Success: Successfully added file to list
>>> pcap-file-number
SND: {"command": "pcap-file-number"}
RCV: {"message": 1, "return": "OK"}
>>> pcap-file-list
SND: {"command": "pcap-file-list"}
RCV: {"message": {"count": 1, "files": ["/home/eric/git/oisf/benches/sandnet.pcap"]}, "return": "OK"}
Success: {'count': 1, 'files': ['/home/eric/git/oisf/benches/sandnet.pcap']}

There is one thing to be careful about: a suricata message is sent in multiple send operations. This result in pos-
sible incomplete read on client side. The worse workaround is to sleep a bit before trying a recv call. An other
solution is to use non blocking socket and retry a recv if the previous one has failed. This method is used here:
source:scripts/suricatasc/suricatasc.in#L43

226 Chapter 16. Interacting via Unix Socket

CHAPTER

SEVENTEEN

MAN PAGES

Suricata

SYNOPSIS

suricata [OPTIONS] [BPF FILTER]

DESCRIPTION

Suricata is a high performance Network IDS, IPS and Network Security Monitoring engine. Open Source and owned
by a community run non-profit foundation, the Open Information Security Foundation (OISF).

OPTIONS

-h
Display a brief usage overview.

-V
Displays the version of Suricata.

-c <path>
Path to configuration file.

-T
Test configuration.

-v
The -v option enables more verbosity of Suricata’s output. Supply multiple times for more verbosity.

-r <path>
Run in pcap offline mode reading files from pcap file.

-i <interface>
After the -i option you can enter the interface card you would like to use to sniff packets from. This option will
try to use the best capture method available.

--pcap[=<device>]
Run in PCAP mode. If no device is provided the interfaces provided in the pcap section of the configuration file
will be used.

--af-packet[=<device>]
Enable capture of packet using AF_PACKET on Linux. If no device is supplied, the list of devices from the
af-packet section in the yaml is used.

227

Suricata User Guide, Release 4.0.0-beta1

-q <queue id>
Run inline of the NFQUEUE queue ID provided. May be provided multiple times.

-s <filename.rules>
With the -s option you can set a file with signatures, which will be loaded together with the rules set in the yaml.

-S <filename.rules>
With the -S option you can set a file with signatures, which will be loaded exclusively, regardless of the rules set
in the yaml.

-l <directory>
With the -l option you can set the default log directory. If you already have the default-log-dir set in yaml, it
will not be used by Suricata if you use the -l option. It will use the log dir that is set with the -l option. If you do
not set a directory with the -l option, Suricata will use the directory that is set in yaml.

-D
Normally if you run Suricata on your console, it keeps your console occupied. You can not use it for other
purposes, and when you close the window, Suricata stops running. If you run Suricata as deamon (using the -D
option), it runs at the background and you will be able to use the console for other tasks without disturbing the
engine running.

--runmode <runmode>
With the –runmode option you can set the runmode that you would like to use. This command line option can
override the yaml runmode option.

Runmodes are: workers, autofp and single.

For more information about runmodes see Runmodes in the user guide.

-F <bpf filter file>
Use BPF filter from file.

-k [all|none]
Force (all) the checksum check or disable (none) all checksum checks.

--user=<user>
Set the process user after initialization. Overrides the user provided in the run-as section of the configuration
file.

--group=<group>
Set the process group to group after initialization. Overrides the group provided in the run-as section of the
configuration file.

--pidfile <file>
Write the process ID to file. Overrides the pid-file option in the configuration file and forces the file to be written
when not running as a daemon.

--init-errors-fatal
Exit with a failure when errors are encountered loading signatures.

--disable-detection
Disable the detection engine.

--dump-config
Dump the configuration loaded from the configuration file to the terminal and exit.

--build-info
Display the build information the Suricata was built with.

--list-app-layer-protos
List all supported application layer protocols.

228 Chapter 17. Man Pages

Suricata User Guide, Release 4.0.0-beta1

--list-keywords=[all|csv|<kword>]
List all supported rule keywords.

--list-runmodes
List all supported run modes.

--set <key>=<value>
Set a configuration value. Useful for overriding basic configuration parameters in the configuration. For exam-
ple, to change the default log directory:

--set default-log-dir=/var/tmp

--engine-analysis
Print reports on analysis of different sections in the engine and exit. Please have a look at the conf parameter
engine-analysis on what reports can be printed

--unix-socket=<file>
Use file as the Suricata unix control socket. Overrides the filename provided in the unix-command section of the
configuration file.

--pcap-buffer-size=<size>
Set the size of the PCAP buffer (0 - 2147483647).

--netmap[=<device>]
Enable capture of packet using NETMAP on FreeBSD or Linux. If no device is supplied, the list of devices
from the netmap section in the yaml is used.

--pfring[=<device>]
Enable PF_RING packet capture. If no device provided, the devices in the Suricata configuration will be used.

--pfring-cluster-id <id>
Set the PF_RING cluster ID.

--pfring-cluster-type <type>
Set the PF_RING cluster type (cluster_round_robin, cluster_flow).

-d <divert-port>
Run inline using IPFW divert mode.

--dag <device>
Enable packet capture off a DAG card. If capturing off a specific stream the stream can be select using a device
name like “dag0:4”. This option may be provided multiple times read off multiple devices and/or streams.

--napatech
Enable packet capture using the Napatech Streams API.

--mpipe
Enable packet capture using the TileGX mpipe interface.

--erf-in=<file>
Run in offline mode reading the specific ERF file (Endace extensible record format).

--simulate-ips
Simulate IPS mode when running in a non-IPS mode.

OPTIONS FOR DEVELOPERS

-u
Run the unit tests and exit. Requires that Suricata be compiled with –enable-unittests.

17.1. Suricata 229

Suricata User Guide, Release 4.0.0-beta1

-U, --unittest-filter=REGEX
With the -U option you can select which of the unit tests you want to run. This option uses REGEX. Example
of use: suricata -u -U http

--list-unittests
List all unit tests.

--fatal-unittests
Enables fatal failure on a unit test error. Suricata will exit instead of continuuing more tests.

--unittests-coverage
Display unit test coverage report.

SIGNALS

Suricata will respond to the following signals:

SIGUSR2 Causes Suricata to perform a live rule reload.

SIGHUP Causes Suricata to close and re-open all log files. This can be used to re-open log files after they may have
been moved away by log rotation utilities.

FILES AND DIRECTORIES

/usr/local/etc/suricata/suricata.yaml Default location of the Suricata configuration file.

/usr/local/var/log/suricata Default Suricata log directory.

BUGS

Please visit Suricata’s support page for information about submitting bugs or feature requests.

NOTES

• Suricata Home Page

https://suricata-ids.org/

• Suricata Support Page

https://suricata-ids.org/support/

230 Chapter 17. Man Pages

https://suricata-ids.org/
https://suricata-ids.org/support/

CHAPTER

EIGHTEEN

ACKNOWLEDGEMENTS

Thank you to the following for their Wiki and documentation contributions that have made this user guide possible:

• Andreas Herz

• Andreas Moe

• Anne-Fleur Koolstra

• Christophe Vandeplas

• Darren Spruell

• David Cannings

• David Diallo

• David Wharton

• Eric Leblond

• god lol

• Haris Haq

• Ignacio Sanchez

• Jason Ish

• Jason Taylor

• Josh Smith

• Ken Steele

• Les Syv

• Mark Solaris

• Martin Holste

• Mats Klepsland

• Matt Jonkman

• Michael Bentley

• Michael Hrishenko

• Nathan Jimerson

• Nicolas Merle

• Peter Manev

231

Suricata User Guide, Release 4.0.0-beta1

• Philipp Buehler

• Rob MacGregor

• Russel Fulton

• Victor Julien

• Vincent Fang

• Zach Rasmor

232 Chapter 18. Acknowledgements

CHAPTER

NINETEEN

LICENSES

GNU General Public License

Version 2, June 1991 Copyright © 1989, 1991 Free Software Foundation, Inc. 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the
GNU General Public License is intended to guarantee your freedom to share and change free software–to make sure
the software is free for all its users. This General Public License applies to most of the Free Software Foundation’s
software and to any other program whose authors commit to using it. (Some other Free Software Foundation software
is covered by the GNU Lesser General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to
make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that
you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to
surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all
the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show
them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal
permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no warranty
for this free software. If the software is modified by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors
of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this,
we have made it clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

233

Suricata User Guide, Release 4.0.0-beta1

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it
may be distributed under the terms of this General Public License. The “Program”, below, refers to any such program
or work, and a “work based on the Program” means either the Program or any derivative work under copyright law: that
is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into
another language. (Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope.
The act of running the Program is not restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by running the Program). Whether that is
true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer
of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection
in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program,
and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet
all of these conditions:

• a) You must cause the modified files to carry prominent notices stating that you changed the files and the date
of any change.

• b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from
the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this
License.

• c) If the modified program normally reads commands interactively when run, you must cause it, when started
running for such interactive use in the most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling the user how to view a copy of
this License. (Exception: if the Program itself is interactive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from
the Program, and can be reasonably considered independent and separate works in themselves, then this License, and
its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the
terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every
part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather,
the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on
the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you also do one of the following:

• a) Accompany it with the complete corresponding machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

234 Chapter 19. Licenses

Suricata User Guide, Release 4.0.0-beta1

• b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no
more than your cost of physically performing source distribution, a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

• c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This
alternative is allowed only for noncommercial distribution and only if you received the program in object code
or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable
work, complete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the executable. However, as a special
exception, the source code distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place counts as distribution of the source code, even though
third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do
not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program),
you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or
modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a
license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You
may not impose any further restrictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited
to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to
satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution
of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the
section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest
validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution
system, which is implemented by public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Program under this License may add an explicit geographical

19.1. GNU General Public License 235

Suricata User Guide, Release 4.0.0-beta1

distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License which
applies to it and “any later version”, you have the option of following the terms and conditions either of that version
or of any later version published by the Free Software Foundation. If the Program does not specify a version number
of this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different,
write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVIC-
ING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PRO-
GRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPE-
CIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED IN-
ACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve
this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.> Copyright (C) <year> <name of
author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

236 Chapter 19. Licenses

Suricata User Guide, Release 4.0.0-beta1

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY
NO WARRANTY; for details type ‘show w’. This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w‘ and ‘show c‘ should show the appropriate parts of the General Public License.
Of course, the commands you use may be called something other than ‘show w’ and ‘show c‘; they could even be
mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright dis-
claimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes
passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program
is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If
this is what you want to do, use the GNU Lesser General Public License instead of this License.

Creative Commons Attribution-NonCommercial 4.0 International Pub-
lic License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions
of this Creative Commons Attribution-NonCommercial 4.0 International Public License (“Public License”). To the
extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of
Your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits
the Licensor receives from making the Licensed Material available under these terms and conditions.

Section 1 – Definitions.

1. Adapted Material means material subject to Copyright and Similar Rights that is derived from or based upon
the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or oth-
erwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor.
For purposes of this Public License, where the Licensed Material is a musical work, performance, or sound
recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with
a moving image.

2. Adapter’s License means the license You apply to Your Copyright and Similar Rights in Your contributions to
Adapted Material in accordance with the terms and conditions of this Public License.

3. Copyright and Similar Rights means copyright and/or similar rights closely related to copyright including,
without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard
to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section
2(b)(1)-(2) are not Copyright and Similar Rights.

19.2. Creative Commons Attribution-NonCommercial 4.0 International Public License 237

Suricata User Guide, Release 4.0.0-beta1

4. Effective Technological Measures means those measures that, in the absence of proper authority, may not
be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on
December 20, 1996, and/or similar international agreements.

5. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to Copyright
and Similar Rights that applies to Your use of the Licensed Material.

6. Licensed Material means the artistic or literary work, database, or other material to which the Licensor applied
this Public License.

7. Licensed Rights means the rights granted to You subject to the terms and conditions of this Public License,
which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that
the Licensor has authority to license.

8. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

9. NonCommercial means not primarily intended for or directed towards commercial advantage or monetary
compensation. For purposes of this Public License, the exchange of the Licensed Material for other material
subject to Copyright and Similar Rights by digital file-sharing or similar means is NonCommercial provided
there is no payment of monetary compensation in connection with the exchange.

10. Share means to provide material to the public by any means or process that requires permission under the
Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, commu-
nication, or importation, and to make material available to the public including in ways that members of the
public may access the material from a place and at a time individually chosen by them.

11. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the Euro-
pean Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or
succeeded, as well as other essentially equivalent rights anywhere in the world.

12. You means the individual or entity exercising the Licensed Rights under this Public License. Your has a corre-
sponding meaning.

Section 2 – Scope.

1. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a world-
wide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

1. reproduce and Share the Licensed Material, in whole or in part, for NonCommercial purposes only;
and

2. produce, reproduce, and Share Adapted Material for NonCommercial purposes only.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply
to Your use, this Public License does not apply, and You do not need to comply with its terms and
conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any
right or authority to forbid You from making technical modifications necessary to exercise the Li-
censed Rights, including technical modifications necessary to circumvent Effective Technological
Measures. For purposes of this Public License, simply making modifications authorized by this
Section 2(a)(4) never produces Adapted Material.

5. Downstream recipients.

238 Chapter 19. Licenses

Suricata User Guide, Release 4.0.0-beta1

1. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material auto-
matically receives an offer from the Licensor to exercise the Licensed Rights under the terms and
conditions of this Public License.

2. No downstream restrictions. You may not offer or impose any additional or different terms or
conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so
restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission to
assert or imply that You are, or that Your use of the Licensed Material is, connected with, or spon-
sored, endorsed, or granted official status by, the Licensor or others designated to receive attribution
as provided in Section 3(a)(1)(A)(i).

2. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy,
and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to
assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed
Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed
Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory
licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties, including
when the Licensed Material is used other than for NonCommercial purposes.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

1. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

1. retain the following if it is supplied by the Licensor with the Licensed Material:

1. identification of the creator(s) of the Licensed Material and any others designated to
receive attribution, in any reasonable manner requested by the Licensor (including by
pseudonym if designated);

2. a copyright notice;

3. a notice that refers to this Public License;

4. a notice that refers to the disclaimer of warranties;

5. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

2. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

3. indicate the Licensed Material is licensed under this Public License, and include the text
of, or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium,
means, and context in which You Share the Licensed Material. For example, it may be reasonable
to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required
information.

3. If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A)
to the extent reasonably practicable.

19.2. Creative Commons Attribution-NonCommercial 4.0 International Public License 239

Suricata User Guide, Release 4.0.0-beta1

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not prevent
recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material:

1. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a
substantial portion of the contents of the database for NonCommercial purposes only;

2. if You include all or a substantial portion of the database contents in a database in which You have Sui Generis
Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual
contents) is Adapted Material; and

3. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of
the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License
where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

1. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Li-
censed Material as-is and as-available, and makes no representations or warranties of any kind concern-
ing the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation,
warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent
or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable.
Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to You.

2. To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without
limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive,
exemplary, or other losses, costs, expenses, or damages arising out of this Public License or use of the
Licensed Material, even if the Licensor has been advised of the possibility of such losses, costs, expenses,
or damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply
to You.

3. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to
the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.

Section 6 – Term and Termination.

1. This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail
to comply with this Public License, then Your rights under this Public License terminate automatically.

2. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek
remedies for Your violations of this Public License.

3. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions
or stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License.

240 Chapter 19. Licenses

Suricata User Guide, Release 4.0.0-beta1

4. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

1. The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless
expressly agreed.

2. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate
from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

1. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict,
or impose conditions on any use of the Licensed Material that could lawfully be made without permission under
this Public License.

2. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically
reformed to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall
be severed from this Public License without affecting the enforceability of the remaining terms and conditions.

3. No term or condition of this Public License will be waived and no failure to comply consented to unless expressly
agreed to by the Licensor.

4. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges
and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or
authority.

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to apply
one of its public licenses to material it publishes and in those instances will be considered the “Licensor.” Ex-
cept for the limited purpose of indicating that material is shared under a Creative Commons public license or
as otherwise permitted by the Creative Commons policies published at creativecommons.org/policies, Creative
Commons does not authorize the use of the trademark “Creative Commons” or any other trademark or logo
of Creative Commons without its prior written consent including, without limitation, in connection with any
unauthorized modifications to any of its public licenses or any other arrangements, understandings, or agree-
ments concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part of
the public licenses.

Creative Commons may be contacted at creativecommons.org.

Suricata Source Code

The Suricata source code is licensed under version 2 of the GNU General Public License.

Suricata Documentation

The Suricata documentation (this documentation) is licensed under the Creative Commons Attribution-
NonCommercial 4.0 International Public License.

19.3. Suricata Source Code 241

Suricata User Guide, Release 4.0.0-beta1

242 Chapter 19. Licenses

INDEX

Symbols
–af-packet[=<device>]

command line option, 7, 227
–build-info

command line option, 8, 228
–dag <device>

command line option, 9, 229
–disable-detection

command line option, 8, 228
–disable-gccmarch-native

command line option, 3
–dump-config

command line option, 8, 228
–enable-geopip

command line option, 3
–enable-lua

command line option, 3
–engine-analysis

command line option, 8, 229
–erf-in=<file>

command line option, 9, 229
–fatal-unittests

command line option, 9, 230
–group=<group>

command line option, 8, 228
–init-errors-fatal

command line option, 8, 228
–list-app-layer-protos

command line option, 8, 228
–list-keywords=[all|csv|<kword>]

command line option, 8, 228
–list-runmodes

command line option, 8, 229
–list-unittests

command line option, 9, 230
–localstatedir=/var

command line option, 3
–mpipe

command line option, 9, 229
–napatech

command line option, 9, 229
–netmap[=<device>]

command line option, 9, 229
–pcap-buffer-size=<size>

command line option, 9, 229
–pcap[=<device>]

command line option, 7, 227
–pfring-cluster-id <id>

command line option, 9, 229
–pfring-cluster-type <type>

command line option, 9, 229
–pfring[=<device>]

command line option, 9, 229
–pidfile <file>

command line option, 8, 228
–prefix=/usr/

command line option, 3
–runmode <runmode>

command line option, 8, 228
–set <key>=<value>

command line option, 8, 229
–simulate-ips

command line option, 9, 229
–sysconfdir=/etc

command line option, 3
–unittests-coverage

command line option, 9, 230
–unix-socket=<file>

command line option, 8, 229
–user=<user>

command line option, 8, 228
-D

command line option, 7, 228
-F <bpf filter file>

command line option, 8, 228
-S <filename.rules>

command line option, 7, 228
-T

command line option, 7, 227
-U, –unittest-filter=REGEX

command line option, 9, 229
-V

command line option, 7, 227
-c <path>

243

Suricata User Guide, Release 4.0.0-beta1

command line option, 7, 227
-d <divert-port>

command line option, 9, 229
-h

command line option, 7, 227
-i <interface>

command line option, 7, 227
-k [all|none]

command line option, 8, 228
-l <directory>

command line option, 7, 228
-q <queue id>

command line option, 7, 227
-r <path>

command line option, 7, 227
-s <filename.rules>

command line option, 7, 228
-u

command line option, 9, 229
-v

command line option, 7, 227

C
command line option

–af-packet[=<device>], 7, 227
–build-info, 8, 228
–dag <device>, 9, 229
–disable-detection, 8, 228
–disable-gccmarch-native, 3
–dump-config, 8, 228
–enable-geopip, 3
–enable-lua, 3
–engine-analysis, 8, 229
–erf-in=<file>, 9, 229
–fatal-unittests, 9, 230
–group=<group>, 8, 228
–init-errors-fatal, 8, 228
–list-app-layer-protos, 8, 228
–list-keywords=[all|csv|<kword>], 8, 228
–list-runmodes, 8, 229
–list-unittests, 9, 230
–localstatedir=/var, 3
–mpipe, 9, 229
–napatech, 9, 229
–netmap[=<device>], 9, 229
–pcap-buffer-size=<size>, 9, 229
–pcap[=<device>], 7, 227
–pfring-cluster-id <id>, 9, 229
–pfring-cluster-type <type>, 9, 229
–pfring[=<device>], 9, 229
–pidfile <file>, 8, 228
–prefix=/usr/, 3
–runmode <runmode>, 8, 228
–set <key>=<value>, 8, 229

–simulate-ips, 9, 229
–sysconfdir=/etc, 3
–unittests-coverage, 9, 230
–unix-socket=<file>, 8, 229
–user=<user>, 8, 228
-D, 7, 228
-F <bpf filter file>, 8, 228
-S <filename.rules>, 7, 228
-T, 7, 227
-U, –unittest-filter=REGEX, 9, 229
-V, 7, 227
-c <path>, 7, 227
-d <divert-port>, 9, 229
-h, 7, 227
-i <interface>, 7, 227
-k [all|none], 8, 228
-l <directory>, 7, 228
-q <queue id>, 7, 227
-r <path>, 7, 227
-s <filename.rules>, 7, 228
-u, 9, 229
-v, 7, 227

244 Index

	What is Suricata
	About the Open Information Security Foundation

	Installation
	Source
	Binary packages
	Advanced Installation

	Command Line Options
	Unit Tests

	Suricata Rules
	Rules Introduction
	Meta-settings
	Header Keywords
	Prefilter
	Payload Keywords
	HTTP Keywords
	Flow Keywords
	Flowint
	Xbits
	File Keywords
	Rule Thresholding
	DNS Keywords
	SSL/TLS Keywords
	Modbus Keyword
	DNP3 Keywords
	ENIP/CIP Keywords
	Generic App Layer Keywords
	Lua Scripting
	Normalized Buffers
	Differences From Snort

	Rule Management
	Rule Management with Oinkmaster
	Adding Your Own Rules
	Rule Reloads

	Making sense out of Alerts
	Performance
	Runmodes
	Packet Capture
	Tuning Considerations
	Hyperscan
	High Performance Configuration
	Statistics
	Ignoring Traffic
	Packet Profiling
	Rule Profiling
	Tcmalloc

	Configuration
	Suricata.yaml
	Global-Thresholds
	Snort.conf to Suricata.yaml
	Log Rotation
	Multi Tenancy
	Dropping Privileges After Startup

	Reputation
	IP Reputation

	Init Scripts
	Setting up IPS/inline for Linux
	Iptables configuration

	Output
	EVE
	Lua Output
	Syslog Alerting Compatibility
	Custom http logging
	Custom tls logging

	File Extraction
	Architecture
	Settings
	Output
	Rules
	MD5

	Public Data Sets
	Using Capture Hardware
	Endace DAG
	Napatech Suricata Installation Guide
	Myricom

	Interacting via Unix Socket
	Introduction
	Commands in standard running mode
	Commands on the cmd prompt
	Pcap processing mode
	Build your own client

	Man Pages
	Suricata

	Acknowledgements
	Licenses
	GNU General Public License
	Creative Commons Attribution-NonCommercial 4.0 International Public License
	Suricata Source Code
	Suricata Documentation

	Index

